• ISSN 1673-5722
  • CN 11-5429/P

利用监控录像估算宏观烈度和强地面运动参数

郑怡 杨小林 马海超

郑怡,杨小林,马海超,2025. 利用监控录像估算宏观烈度和强地面运动参数−以2025年西藏定日M6.8地震为例. 震灾防御技术,20(1):24−31. doi:10.11899/zzfy20250012. doi: 10.11899/zzfy20250012
引用本文: 郑怡,杨小林,马海超,2025. 利用监控录像估算宏观烈度和强地面运动参数−以2025年西藏定日M6.8地震为例. 震灾防御技术,20(1):24−31. doi:10.11899/zzfy20250012. doi: 10.11899/zzfy20250012
Zheng Yi, Yang Xiaolin, Ma Haichao. Estimating Macroseismic Intensities and Strong Ground Motion Parameters Using Surveillance Videos from Social Media: A Case of the 2025 M6.8 Dingri Earthquake in Xizang[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 24-31. doi: 10.11899/zzfy20250012
Citation: Zheng Yi, Yang Xiaolin, Ma Haichao. Estimating Macroseismic Intensities and Strong Ground Motion Parameters Using Surveillance Videos from Social Media: A Case of the 2025 M6.8 Dingri Earthquake in Xizang[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 24-31. doi: 10.11899/zzfy20250012

利用监控录像估算宏观烈度和强地面运动参数以2025年西藏定日M6.8地震为例

doi: 10.11899/zzfy20250012
基金项目: 国家自然科学基金(42304004)
详细信息
    作者简介:

    郑怡,女,生于1988年。工程师。主要从事地震学研究。E-mail:yizheng2006@hotmail.com

    通讯作者:

    杨小林,男,生于1983年。高级工程师,博士。主要从事地震烈度和强地面运动研究。E-mail:yang-xiaolin123@163.com

  • 12 https://www.globalcmt.org/
  • 23 https://www.bilibili.com/video/BV1FrrmY1ELa/

Estimating Macroseismic Intensities and Strong Ground Motion Parameters Using Surveillance Videos from Social Media: A Case of the 2025 M6.8 Dingri Earthquake in Xizang

  • 摘要: 2025年1月7日西藏定日县发生了M6.8破坏性地震,震区中的一些监控录像清晰地拍摄到了震害及地震动过程。为了挖掘这些视频所记录的宏观烈度和强地面运动参数等信息,本研究尝试采用数字视频和音频分析等方法,对其中7个监控录像进行了诊断。结果表明:(1)6个超市所在地的宏观烈度值约为V~VII度;(2)某民用住宅处的强地面运动持续时间约为20~25 s,并在第7 s时达到峰值;(3)利用建筑金属构件和器皿的响动声,可以间接表征当地强地面运动的主过程。该研究不仅能补充定日地震的宏观烈度和强震动记录,而且能为数智时代下的宏观烈度调查和强震动视觉测量等提供参考。
    1)  12 https://www.globalcmt.org/
    2)  23 https://www.bilibili.com/video/BV1FrrmY1ELa/
  • 图  1  地震时定日县不同监控点拍摄的超市内人和器物的反应实况

    Figure  1.  Scenes of fall down of objects from tables and swaying of hanging objects in indoor environments as well as emergency evacuation of many frightened people during the Dingri earthquake in Dingri county

    图  2  地震时定日县某监控点拍摄的地震动场景

    Figure  2.  Scene of strong ground shaking during the Dingri earthquake in Dingri county

    图  3  监控录像提取的强地面运动时程

    Figure  3.  The Waveforms of strong ground motions digitized from the surveillance video pictures

    图  4  监控录像提取的相对运动振幅谱

    Figure  4.  Amplitude spectra of waveforms retrieved from the surveillance video record

    图  5  定日地震时音频记录的声波波形及其功率谱密度图

    Figure  5.  Audio track of surveillance video record and its spectrogram for Dingri earthquake

    表  1  利用监控录像估算的宏观烈度值

    Table  1.   Macroseismic intensity estimated using surveillance video record

    监控
    录像序号
    宏观
    烈度/度
    烈度评定依据 烈度值
    最大时刻
    烈度最大时刻与
    发震时刻的间隔/s
    视频来源
    1 VII 大多数人惊逃户外,物品从架子上掉落,安全出口指示灯大幅度晃动。 https://tv.cctv.com/2025/01/08/VIDEswjTAI6p0gE5OJXghOxD250108.shtml
    2 VII 大多数人惊逃户外,物品从架子上掉落,部分吊顶板坠落,吊灯等悬挂物大幅度晃动。 监控录像时间被
    遮挡,无法辨识
    3 VII 大多数人惊逃户外,物品从架子上掉落,部分吊顶板坠落。
    4 VII 物品从架子上掉落。 9:05:38 22 https://www.bilibili.com/video/BV1ZUrSYmEzG/
    5 V~VII 物品从架子上掉落。 9:05:29 13 https://www.bilibili.com/video/BV1HPrQY4Ekr/
    6 V~VII 物品从架子上掉落。 9:05:30 14
    下载: 导出CSV
  • 任叶飞,温瑞智,周宝峰等,2014. 2013年4月20日四川芦山地震强地面运动三要素特征分析. 地球物理学报,57(6):1836−1846. doi: 10.6038/cjg20140615

    Ren Y. F., Wen R. Z., Zhou B. F., et al., 2014. The characteristics of strong ground motion of Lushan earthquake on April 20, 2013. Chinese Journal of Geophysics, 57(6): 1836−1846. (in Chinese) doi: 10.6038/cjg20140615
    任叶飞,王宏伟,刁红旗等,2025. 公里网格的强震动时程快速产出与共享−−以2025年1月7日西藏定日 M S6.8地震为例. 地震工程与工程振动,45(1):1−11.

    Ren Y. F., Wang H. W., Diao H. Q., 2025. Rapid generation and sharing of kilometer-grid strong motion time histories: a case study of the M S6.8 Dingri, Xizang earthquake on January 7, 2025. Earthquake Engineering and Engineering Dynamics, 45(1): 1−11. (in Chinese)
    王楠,李永生,申文豪等,2025. 2025年1月7日西藏定日 M S6.8地震震源机制InSAR反演及强地面运动快速模拟. 武汉大学学报(信息科学版),50(2):404−411.

    Wang N., Li Y. S., Shen W. H., et al., 2025. Source parameters and rapid simulation of strong ground motion of the M S6.8 earthquake on January 7, 2025 in Dingri (Xizang, China) derived from InSAR observation. Geomatics and Information Science of Wuhan University, 50(2): 404−411. (in Chinese)
    夏旻,吴忠良,蒋长胜等,2008. 用监控录像资料估计强地面运动参数−−汶川地震的两个试验. 防灾减灾工程学报,28(4):536−539. doi: 10.3969/j.issn.1672-2132.2008.04.023

    Xia M., Wu Z. L., Jiang C. S., et al., 2008. Estimating strong ground motion parameters using monitoring video−−two cases in the May 12, 2008, Wenchuan earthquake. Journal of Disaster Prevention and Mitigation Engineering, 28(4): 536−539. (in Chinese) doi: 10.3969/j.issn.1672-2132.2008.04.023
    中国地震局工程力学研究所,2025. 西藏日喀则市定日县6.8级地震强震动观测简报(一). (2025-01-09)[2025-3-14]. https://www.iem.ac.cn/zxgl/info?id=3894.
    邹俊杰,邵志刚,何宏林等,2025. 2025年1月7日西藏定日 M S6.8地震地表破裂解译与建筑物震害损毁统计. 地震地质,47(1):16−35.

    Zou J. J., Shao Z. G., He H. L., et al., 2025. Surface rupture interpretation and building damage assessment of Xizang Dingri M S6.8 earthquake on January 7, 2025. Seismology and Geology, 47(1): 16−35. (in Chinese)
    大堀道広,奥田暁,若松邦夫等,1995. コンビニエンス・ストアの防犯カメラが記録した1994年10月4日北海道東方沖地震. 地震 第2輯,48(3):423−427.

    Ohori M., Okuda S., Wakamatsu K., et al, 1995. Hokkaido-Toho-Oki earthquake on October 4,1994 recorded by security cameras at convenience stores. Journal of the Seismological Society of Japan. 2nd Ser., 48(3): 423−427. (in Japanese
    肥田剛典,永野正行,2012. アンケート調査に基づく2011年東北地方太平洋沖地震時の超高層集合住宅の揺れと被害. 日本建築学会技術報告集, 18 (39):579−584.

    Hida T., Nagano M., 2012. Shaking and damages of super high-rise residential buildings during the 2011 off the pacific coast of Tohoku earthquake based on questionnaire survey. AIJ Journal of Technology and Design, 18 (39):579−584. (in Japanese
    加藤護,2017.2014年長野県北部の地震による長野善光寺の石灯籠の被害と強震動. 地震 第2輯, 70 :153−160.

    Kato M., 2017. Damage of stone lanterns at Zenkoji Temple,Nagano,Japan and ground motion of northern Nagano earthquake,November 22,2014. Journal of the Seismological Society of Japan. 2nd Ser. , 70 :153−160. (in Japanese
    加藤護,日岡惇,2015. 北野天満宮の石灯籠建立時系列に記録された京都市街の歴史地震動. 地震 第2輯, 68 (2):45−53.

    Kato M., Hioka J., 2015. Ages of stone lanterns built at Kitano-Tenmangu Shrine,Kyoto,as records of historic strong ground motions. Journal of the Seismological Society of Japan. 2nd Ser. , 68 (2):45−53. (in Japanese
    Anooshehpoor A., Heaton T. H., Shi B. P., et al., 1999. Estimates of the ground accelerations at Point Reyes Station during the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 89(4): 845−853. doi: 10.1785/BSSA0890040845
    Atkinson G. M., Wald D. J., 2007. “Did you feel it?” Intensity data: a surprisingly good measure of earthquake ground motion. Seismological Research Letters, 78(3): 362−368. doi: 10.1785/gssrl.78.3.362
    Brown D., Cox A. J., 2009. Innovative uses of video analysis. The Physics Teacher, 47(3): 145−150. doi: 10.1119/1.3081296
    Brune J. N., 1996. Precariously balanced rocks and ground-motion maps for southern California. Bulletin of the Seismological Society of America, 86(1A): 43−54. doi: 10.1785/BSSA08601A0043
    Buyukozturk O. , Chen J. G. , Wadhwa N. , et al. , 2016. Smaller than the eye can see: vibration analysis with video cameras. In: 19th World Conference on Non-Destructive Testing (WCNDT 2016). Munich: WCNDT.
    Gómez Capera A. A., D’Amico V., Meletti C., et al., 2010. Seismic hazard assessment in terms of macroseismic intensity in Italy: a critical analysis from the comparison of different computational procedures. Bulletin of the Seismological Society of America, 100(4): 1614−1631. doi: 10.1785/0120090212
    Hill D. P., Fischer F. G., Lahr K. M., et al., 1976. Earthquake sounds generated by body-wave ground motion. Bulletin of the Seismological Society of America, 66(4): 1159−1172.
    Hori M., Sutoh A., Saitoh Y., 2000. Strong motion measurement using security video camera. Doboku Gakkai Ronbunshu, 2000(647): 57−66. doi: 10.2208/jscej.2000.647_57
    Kikuchi M., 1995. A shopping trolley seismograph. Nature, 377(6544): 19.
    Lamb O. D., Lees J. M., Malin P. E., et al., 2021. Audible acoustics from low-magnitude fluid-induced earthquakes in Finland. Scientific Reports, 11(1): 19206. doi: 10.1038/s41598-021-98701-6
    Liang W. T., Lee J. C., Chen K. H., et al., 2017. Citizen earthquake science in Taiwan: from science to hazard mitigation. Journal of Disaster Research, 12(6): 1174−1181. doi: 10.20965/jdr.2017.p1174
    Liu S. Y., Jiang Y., Li M., et al., 2021. Long period ground motion simulation and its application to the seismic design of high-rise buildings. Soil Dynamics and Earthquake Engineering, 143: 106619. doi: 10.1016/j.soildyn.2021.106619
    Maurice S., Chide B., Murdoch N., et al., 2022. In situ recording of Mars soundscape. Nature, 605(7911): 653−658. doi: 10.1038/s41586-022-04679-0
    Mcphillips D., Pratt T. L., 2024. Precariously balanced rocks in northern New York and Vermont, U. S. A. : ground‐motion constraints and implications for fault sources. Bulletin of the Seismological Society of America, 114(6): 3171−3182.
    Murdoch N., Stott A. E., Gillier M., et al., 2022. The sound of a Martian dust devil. Nature Communications, 13(1): 7505. doi: 10.1038/s41467-022-35100-z
    Ohmachi T., Midorikawa S., 1992. Ground-motion intensity inferred from upthrow of boulders during the 1984 western Nagano Prefecture, Japan, earthquake. Bulletin of the Seismological Society of America, 82(1): 44−60. doi: 10.1785/BSSA0820010044
    Ohmachi T. , Midorikawa S. , Honda M. , 1997. Jumping of bell houses caused by near-field ground motion. Case histories and shaking table experiment. Earthquake Engineering & Structural Dynamics, 26 (6): 657−665.
    Ohori M., Nakamura M., Wakamatsu K., 2001. Digitized waveforms obtained from videotaped pictures of landscape shaking during large earthquakes. Seismological Research Letters, 72(4): 430−439. doi: 10.1785/gssrl.72.4.430
    Oliveira C. S., Ferreira M. A., 2021. Following the video surveillance and personal video cameras: new tools and innovations to health monitor the earthquake wave field. International Journal of Disaster Risk Reduction, 64: 102489. doi: 10.1016/j.ijdrr.2021.102489
    Oliveira C. S., Ferreira M. A., O'Neill H., 2024. The role of video cameras and emerging technologies in disaster response to increase sustainability of societies: insights on the 2023 Türkiye-Syria earthquake. Sustainability, 16(17): 7618. doi: 10.3390/su16177618
    Peng Z. G., Aiken C., Kilb D., et al., 2012. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake. Seismological Research Letters, 83(2): 287−293. doi: 10.1785/gssrl.83.2.287
    Rossi A., Tertulliani A., Azzaro R., et al., 2019. The 2016-2017 earthquake sequence in central Italy: macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bulletin of Earthquake Engineering, 17(5): 2407−2431. doi: 10.1007/s10518-019-00556-w
    Salaree A., Spica Z., Huang Y. H., 2023. Solving a seismic mystery with the audio from a diver’s camera: a case of shallow water T‐waves in the Persian Gulf. Geophysical Research Letters, 50(18): e2023GL104544. doi: 10.1029/2023GL104544
    Samardjieva E., Badal J., 2002. Estimation of the expected number of casualties caused by strong earthquakes. Bulletin of the Seismological Society of America, 92(6): 2310−2322. doi: 10.1785/0120010112
    Takakura H., Boret S. P., 2020. The value of visual disaster records from digital archives and films in post-3/11 Japan. International Journal Sustainable Future for Human Security, 7(3): 58−65.
    Vannucci G., Gasperini P., Gulia L., et al., 2024. Earthquakes parameters from citizen testimonies: a retrospective analysis of EMSC database. Seismological Research Letters, 95(2A): 969−996. doi: 10.1785/0220230245
    Wald D. J., Quitoriano V., Worden C. B., et al., 2012. USGS “did you feel it?” Internet-based macroseismic intensity maps. Annals of Geophysics, 54(6): 688−707.
    Wang X. M. , Wu S. W. , Zhao Z. X. , et al. , 2024. Optimization of emergency rescue routes after a violent earthquake. Natural Hazards, 1−29[2025-3-14]. https://link.springer.com/article/ 10.1007/s11069-024-06985-4. Doi: 10.1007/s11069-024-06985-4.
    Yang X. L., Wu Z. L., Jiang C. S., et al., 2011. Estimating intensities and/or strong motion parameters using civilian monitoring videos: the May 12, 2008, Wenchuan earthquake. Pure and Applied Geophysics, 168(5): 753−766. doi: 10.1007/s00024-010-0168-z
    Yokota A. , Hamamoto T. , Koga H. , et al. , 2012. Estimation of earthquake ground motion by image analysis of sliding objects taken with a fixed camera. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba: IEEE, 784−787.
    Yoshida K. , Miyakoshi K. , Irikura K. , 2011. Source process of the 2011 off the Pacific coast of Tohoku earthquake inferred from waveform inversion with long-period strong-motion records. Earth, Planets and Space, 63 (7): 577−582.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 录用日期:  2025-03-03
  • 修回日期:  2025-02-28
  • 网络出版日期:  2025-04-18
  • 刊出日期:  2025-03-30

目录

    /

    返回文章
    返回