Influence of Directional and Traveling Wave Effects of Ground Motion on the Dynamic Response of Tower Line Systems with Different Span Length
-
摘要: 输电线路需要跨越不同的地形地貌以满足供电需求,输电塔两端档距往往是不同的,因此有必要对不同档距的输电塔线体系进行地震响应研究。本文基于OpenSees建立了3种不同档距的塔线体系,考虑了地震动传播方向的随机性,对不同方向地震动进行正交分解,得到沿塔线体系x和y方向的加速度时程,同时考虑地震动的行波效应,分别进行了塔线体系弹塑性时程分析,研究地震动方向性效应和行波效应对不同档距塔线体系结构响应的影响。研究结果表明,在不同方向地震动作用下,中塔和边塔的最不利档距为400 m-400 m-400 m-400 m、400 m-100 m-700 m-400 m。在行波作用下,中塔和边塔的最不利档距为400 m-250 m-550 m-400 m、400 m-400 m-400 m-400 m。输电塔的结构响应受相位差和输电线振动共同影响,行波效应对结构的影响较大。输电塔的主材应力最大值集中于塔身上部第4号主材和第6号主材,这些位置被认为是输电塔的薄弱环节。此外,塔顶位移受地震动效应影响较大,地震动方向和行波效应分别对导线横向位移和竖向位移产生了显著影响。Abstract: Transmission lines must cross various topographic features to meet power supply demands, resulting in transmission towers with unequal span lengths at both ends. Consequently, it is essential to conduct seismic response studies on transmission tower-line systems with varying span lengths. In this paper, three tower-line systems with different span lengths are modeled using OpenSees, accounting for the randomness in the propagation direction of ground motion. The ground motion is decomposed into orthogonal directions to obtain acceleration time histories along both the x and y directions of the tower-line system. The traveling wave effect of ground motion is also considered. Elastic-plastic time history analyses are performed to investigate the structural response of the tower-line systems under the directional effects of ground motion and the traveling wave effect. The results indicate the following: Under varying ground motion directions, the most unfavorable span configurations for the middle and side towers are 400 m-400 m-400 m-400 m and 400 m-100 m-700 m-400 m, respectively. Under the influence of traveling waves, the most unfavorable span configurations for the middle and side towers are 400 m-250 m-550 m-400 m and 400 m-400 m-400 m-400 m, respectively. The structural response of the transmission tower is significantly influenced by phase differences and vibrational interactions with the transmission line, with the traveling wave effect playing a major role. The maximum stresses of the main materials of the transmission tower appear in the fourth and sixth main materials at the upper part of the tower, and these locations are considered to be the weak positions of the transmission tower. In addition, the tower top displacement is greatly affected by the effect of ground motion, and the direction of ground motion and traveling wave effects have a significant influence on the lateral and vertical displacements of the conductor respectively.
-
表 1 导地线物理参数
Table 1. Physical parameters of lines
参数 导线 地线 型号 ACSR-720/50 LBGJ-180-20 AC 外径/m 38.48×10−3 7.43×10−3 截面面积/m2 775.41×10−6 173.3×10−6 单位长度质量/(kg·m−1) 2.3977 1.0410 弹性模量/MPa 63700 103600 拉断力/kN 170.60 215.52 表 2 塔线体系自振周期
Table 2. Natural vibration period of tower line system
不同档距塔线体系 自振周期/s T1 T2 塔线体系1 0.818 0.729 塔线体系2 0.792 0.723 塔线体系3 0.782 0.721 表 3 地震动记录信息
Table 3. Ground motion recording information
地震名称 年份 台站 震级/级 PGA Northridge-01 1994 LA - Saturn St 6.69 0.47 g Cape Mendocino 1992 Centerville Beach_ Naval Fac 7.01 0.48 g Chuetsu-oki_ Japan 2007 Yoitamachi Yoita Nagaoka 6.8 0.32 g 表 4 导地线最大张力
Table 4. Maximum tension of lines
地震动方向 塔线体系1 塔线体系2 塔线体系3 导线张力/kN 地线张力/kN 导线张力/kN 地线张力/kN 导线张力/kN 地线张力/kN 0° 53.10 57.83 53.40 57.46 53.36 57.44 30° 53.19 57.78 53.36 57.49 53.43 57.72 45° 53.19 57.66 53.49 57.39 53.59 57.61 60° 53.07 57.50 53.33 57.55 53.46 57.50 90° 52.41 58.31 52.57 58.33 52.67 57.92 表 5 不同档距塔线体系一致激励下塔顶位移
Table 5. Tower top displacement under consistent excitation of tower line system with different span length
塔线体系 塔1塔顶位移/m 塔2塔顶位移/m 塔3塔顶位移/m 塔线体系1 0.123 0.133 0.124 塔线体系2 0.119 0.138 0.123 塔线体系3 0.123 0.134 0.123 表 6 导地线最大张力
Table 6. Maximum tension of lines
波速/(m·s−1) 塔线体系1 塔线体系2 塔线体系3 导线张力/kN 地线张力/kN 导线张力/kN 地线张力/kN 导线张力/kN 地线张力/kN 1000 49.40 61.50 48.29 62.81 46.95 61.18 1500 49.69 59.80 48.96 63.28 47.77 61.74 2000 49.65 58.46 49.10 60.92 48.75 60.81 3000 50.21 58.70 50.48 58.96 50.25 58.97 4000 51.05 58.58 51.23 58.55 51.06 58.58 一致激励 50.47 58.11 50.70 57.60 50.57 57.55 -
卜祥航,曹永兴,梁黄彬等,2020. 地震作用下输电线路塔线耦合的动力响应数值分析. 工业建筑,50(8):128−133.Bu X. H., Cao Y. X., Liang H. B., et al., 2020. Numerical simulations on dynamic responses of a transmission tower-conductor coupling system under earthquake action. Industrial Construction, 50(8): 128−133. (in Chinese) 陈俊旗,王伟,孙超睿,2013. 地震动多点激励下输电塔线的反应分析. 土木工程学报,46(S1):292−297.Chen J. Q., Wang W., Sun C. R., 2013. Seismic response analysis of transmission line systems under multi-support excitations. China Civil Engineering Journal, 46(S1): 292−297. (in Chinese) 范重,张康伟,张郁山等,2021. 视波速确定方法与行波效应研究. 工程力学,38(6):47−61.Fan Z., Zhang K. W., Zhang Y. S., et al., 2021. Study on apparent wave velocity calculation method and on travelling wave effect. Engineering Mechanics, 38(6): 47−61. (in Chinese) 盖霞,2017. 空间变化地震动下输电塔−线体系倒塌机理研究. 济南:山东大学.Gai X., 2017. Collapse mechanism of transmission tower-line system under multi-support and multi-dimensional ground motions. Ji’nan:Shandong University. (in Chinese) 柳国环,李宏男,林海,2009. 结构地震响应计算模型的比较与分析. 工程力学,26(2):10−15.Liu G. H., Li H. N., Lin H., 2009. Comparision and evaluation of models for structural seismic responses analysis. Engineering Mechanics, 26(2): 10−15. (in Chinese) 刘俊才,田利,张睿等,2020. 远场地震作用下输电塔-线体系最不利输入方向预测研究. 工程力学,37(S1):97−103.Liu J. C., Tian L., Zhang R., et al., 2020. Study on the prediction of the most adverse input direction of transmission tower-line system under far-field seismic ground motions. Engineering Mechanics, 37(S1): 97−103. (in Chinese) 田利,李宏男,2012. 多维多点地震动激励下折线型输电塔线体系反应分析. 土木工程学报,45(S1):131−135.Tian L., Li H. N., 2012. Seismic response of fold linear type transmission tower-line system under multi-component multi-support excitations. China Civil Engineering Journal, 45(S1): 131−135. (in Chinese) 田利,李宏男,王文明,2013. 地震动空间变化对高压输电塔线体系地震反应的影响. 振动与冲击,32(8):79−87.Tian L., Li H. N., Wang W. M., 2013. Effects of ground motion spatial variation on seismic response of a power transmission tower-line system. Journal of Vibration and Shock, 32(8): 79−87. (in Chinese) 田利,李宏男,侯和涛,2013. SMART-1台阵地震动激励下输电塔线体系反应分析. 工程力学,30(S1):273−278,283.Tian L., Li H. N., Hou H. T., 2013. Response analysis of transmission tower-line system under SMART-1 seismic ground motion excitation. Engineering Mechanics, 30(S1): 273−278,283. (in Chinese) 田利,牛延宏,马瑞升等,2017. 大跨越输电塔-线耦联体系振动台试验模型设计研究. 世界地震工程,33(3):42−50.Tian L., Niu Y. H., Ma R. S., et al., 2017. Design study on shaking table test model of a long span transmission tower-line coupling system. World Earthquake Engineering, 33(3): 42−50. (in Chinese) 田利,李兴建,易思银等,2018. 地震下考虑桩-土-结构相互作用的输电塔-线体系响应分析. 世界地震工程,34(3):1−11.Tian L., Li X. J., Yi S. Y., et al., 2018. Response analysis of transmission tower-line system considering pile-soil-structure interaction under earthquake loading. World Earthquake Engineering, 34(3): 1−11. (in Chinese) 田利,刘俊才,潘海洋等,2018. 近断层地震下输电塔-线体系振动台试验研究. 土木工程学报,51(S1):127−132.Tian L., Liu J. C., Pan H. Y., et al., 2018. Research on shaking table test of transmission tower-line system under near-fault earthquake. China Civil Engineering Journal, 51(S1): 127−132. (in Chinese) 王飞,2020. 特高压输电线路杆塔结构抗震性能研究. 哈尔滨:中国地震局工程力学研究所.Wang F. ,2020. Study on seismic performance of UHV transmission line tower structure. Harbin:Institute of Engineering Mechanics,China Earthquake Administration. (in Chinese) 魏奇科,李正良,2011. 行波效应对大跨越输电塔-线体系纵向地震响应影响. 振动与冲击,30(10):236−240.Wei Q. K., Li Z. L., 2011. Traveling wave effect on longitudinal seismic response of a long-span power transmission tower-cable system. Journal of Vibration and Shock, 30(10): 236−240. (in Chinese) 易思银,2018. 近断层地震下大跨越输电塔−线体系响应分析. 济南:山东大学.Yi S. Y. ,2018. Seismic response analysis of large crossing transmission tower-line system subjected to near-fault ground motions. Ji’nan:Shandong University. (in Chinese) 袁光英,潘海洋,马瑞升等,2019. 多维地震下考虑不同破坏准则的输电塔-线体系倒塌分析. 世界地震工程,35(1):184−192.Yuan G. Y., Pan H. Y., Ma R. S., et al., 2019. Collapse analysis of transmission tower-line system under multi-dimensional seismic excitation based on different failure criteria. World Earthquake Engineering, 35(1): 184−192. (in Chinese) FEMA, 2012. Seismic performance assessment of buildings, volume1-methodology. Washington: FEMA, 88−94. Ghobarah A., Aziz T. S., El-Attar M., 1996. Response of transmission lines to multiple support excitation. Engineering Structures, 18(12): 936−946. doi: 10.1016/S0141-0296(96)00020-X Gong J., Zhi X. D., Fan F., 2021. Effect of incident directionality on seismic responses and bearing capacity of OLF1000. Engineering Structures, 242: 112542. doi: 10.1016/j.engstruct.2021.112542 Kassem M. M., Beddu S., Qi Min W., et al, 2022. Quantification of the seismic behavior of a steel transmission tower subjected to single and repeated seismic excitations using vulnerability function and collapse margin ratio. Applied Sciences, 12(4): 1984. doi: 10.3390/app12041984 Kotsubo S., Takanishi T., Uno K., et al., 1983. Dynamic tests and seismic analyses of high steel towers of electrical transmission line. Proceedings of the Japan Society of Civil Engineers, 1983(333): 59−69. doi: 10.2208/jscej1969.1983.333_59 Tian L., Yi S. Y., Qu B., 2018. Orienting ground motion inputs to achieve maximum seismic displacement demands on electricity transmission towers in near-fault regions. Journal of Structural Engineering, 144(4): 04018017. doi: 10.1061/(ASCE)ST.1943-541X.0002000 Tian L., Yang M., Liu S. Y., et al., 2023. Collapse failure analysis and fragility analysis of a transmission tower-line system subjected to the multidimensional ground motion of different input directions. Structures, 48: 1018−1028. doi: 10.1016/j.istruc.2023.01.042 -