Comprehensive Evaluation of Operational Capability of Earthquake Warning Equipment Based on Analytic Hierarchy Process
-
摘要: 本文采用层次分析方法(AHP)对12个省地震局地震预警设备运行情况进行综合评价,基于2022年地震预警设备故障信息及备机调查资料和地震预警设备运行的实际情况和工作经验,按照层次分析法的模型结构,本文构建了地震预警设备运行状况评价指标体系,并对预设范围内的地震预警设备运行状况进行了综合评价与分析。结果表明,本次综合评价结果与地震预警站网运行实际情况相符合,能够正确评价地震预警设备运行状况。最后提出了针对性的改进措施,通过改善评分较低的项目,补齐地震预警设备运行中的短板,为今后的地震预警站网运行维护工作提供参考。
-
关键词:
- 地震预警设备运行 /
- 层次分析方法(AHP) /
- 评价指标体系
Abstract: This paper presents a comprehensive evaluation of the operational status of earthquake early warning (EEW) equipment in 12 provincial earthquake agencies using the Analytic Hierarchy Process (AHP). Based on fault information, backup investigation data from 2022, and the actual operational conditions and experience of EEW equipment, an evaluation index system for the operational status of EEW equipment was developed according to the AHP model structure. A comprehensive evaluation and analysis were then conducted on the operational status of EEW equipment within the predefined scope. The results indicate that the evaluation outcomes align with the actual conditions of the earthquake early warning station network, providing an accurate assessment of the equipment's operational status. Finally, targeted improvement measures are proposed to address identified shortcomings in the operation of the equipment, focusing on projects with lower ratings. These measures offer valuable insights for the future operation and maintenance of earthquake warning station networks. -
表 1 2022年地震预警设备故障和备机备件情况调查表
Table 1. Investigation of the failure and backup information of EEW equipment in 2022
序号 省地震局 总设备数/台 故障设备/台 应备机数量/台 实际备机数量/台 备机缺口/台 1 北京局 533 13 27 15 12 2 天津局 514 8 26 11 15 3 河北局 1881 164 94 70 24 4 山西局 1644 36 82 77 5 5 福建局 1907 7 95 44 51 6 广东局 1787 88 89 81 8 7 四川局 2770 81 139 39 100 8 云南局 2718 62 136 16 120 9 西藏局 367 2 18 0 18 10 甘肃局 2175 66 109 65 44 11 青海局 731 27 37 24 13 12 新疆局 2217 64 111 88 23 总计 19244 618 963 530 433 表 2 1至9等级标度评价集合表
Table 2. Evaluation scales for class levels from 1 to 9
标度等级 含义 1 2个指标比较,具有相同的重要性。 3 2个指标比较,一个指标比另一个稍微重要。 5 2个指标比较,一个指标比另一个重要。 7 2个指标比较,一个指标比另一个明显重要。 9 2个指标比较,一个指标比另一个绝对重要。 2,4,6,8 上述标度的中间值。 上述标度的倒数 一个指标比另一个指标不重要的上述描述。 表 3 判断矩阵的随机一致性指标
Table 3. Random consistency index of the judgment matrix
矩阵阶数 1 2 3 4 5 6 7 8 9 10 11 $ {R}_{\mathrm{R}\mathrm{I}} $ 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 表 4
$ A-B $ 判断矩阵及权重Table 4. Judgment matrix and weights of
$ A-B $ $ A $(目标) $ {B}_{1} $ $ {B}_{2} $ $ {B}_{3} $ 特征值法权重 $ {B}_{1} $ 1 5 2 0.58 $ {B}_{2} $ 1/5 1 1/3 0.11 $ {B}_{3} $ 1/2 3 1 0.31 表 5
$ {B}_{1}-C $ 判断矩阵Table 5. Judgment matrix and weights of
$ {B}_{1}-C $ $ {B}_{1} $ $ {C}_{11} $ $ {C}_{12} $ $ {C}_{13} $ $ {C}_{14} $ 特征值法权重 $ {C}_{11} $ 1 3 4 2 0.46 $ {C}_{12} $ 1/3 1 2 1/2 0.15 $ {C}_{13} $ 1/5 1/2 1 1/3 0.10 $ {C}_{14} $ 1/2 3 2 1 0.29 表 6
$ {B}_{2}-C $ 判断矩阵Table 6. Judgment matrix and weights of
$ {B}_{2}-C $ $ {B}_{2} $ $ {C}_{21} $ $ {C}_{22} $ $ {C}_{23} $ 特征值法权重 $ {C}_{21} $ 1 3 1/3 0.25 $ {C}_{22} $ 1/3 1 1/6 0.10 $ {C}_{23} $ 3 6 1 0.65 表 7
$ {B}_{3}-C $ 判断矩阵Table 7. Judgment matrix and weights of
$ {B}_{3}-C $ $ {B}_{3} $ $ {C}_{31} $ 权重 $ {C}_{31} $ 1 1 表 8 各判断矩阵的一致性检验指标
Table 8. Consistency test indicators for different judgment matrix
检验指标 $ A-B $ $ {B}_{1}-{C}_{1j} $ $ {B}_{2}-{C}_{2j} $ $ {B}_{3}-{C}_{3j} $ $ {R}_{\mathrm{C}\mathrm{R}} $ 0.001878 0.007974 0.007352 0.008642 表 9 地震预警设备运行评价指标及评分细表
Table 9. Detailes of evaluation indicators and scores for the operation of EEW equipment
一级评价指标 二级评价指标 评分规则 满分值 设备运行情况 故障次数 故障次数与设备总数量的比值作为评分值。 100 故障时长 48小时以内不扣分;
48~72小时,每次扣0.2分;
72小时以上,每次扣0.5分。100 恢复率 以故障7天以内未恢复次数计算,
1次减1分得到评分值,最低为0分。100 运行率 以运行率的百分比作为分值。 100 维修能力 自主维修 48小时以内不扣分;
48~72小时,每次扣0.2分;
72小时以上,每次扣0.5分。100 返厂维修 7天以内不扣分;
7天以上,每次扣0.5分。100 待维修 以1次1分,进行减值得到评分值,最低为0分。 100 备机保障 备机数量 设备数量的5%作为备机标准数量,
以达到标准数量的百分比作为分值。100 表 10 12个省地震局预警设备运行评分
Table 10. Scoring on operation status of EEW equipment in 12 provincial earthquake agencies
省地震局 设备运行情况(B1) 维修能力(B2) 备机保障(B3) 地震预警设备
运行评价($ S $)故障次数
($ {C}_{11} $)故障时长
($ {C}_{12} $)恢复率
($ {C}_{13} $)运行率
($ {C}_{14} $)自主维修
($ {C}_{21} $)返厂维修
($ {C}_{22} $)待维修
($ {C}_{23} $)备机数量
($ {C}_{31} $)北京 97.6 93.5 87.0 97.0 94.5 99.0 100 55.6 84 天津 98.4 98.3 99.0 97.4 100 99.5 100 42.3 81 河北 91.3 61.3 75.0 96.8 58.3 99.0 98.0 74.5 83 山西 97.8 92.9 99.0 96.1 91.9 100 100 93.9 96 福建 99.6 98.5 99.0 94.6 98.0 100 100 46.3 82 广东 95.1 77.5 69.0 96.2 83.5 91.0 100 91.0 91 四川 97.1 72.9 59.0 95.5 89.1 83.0 100 28.1 71 云南 97.7 77.3 61.0 95.1 84.7 94.5 95.0 11.8 66 西藏 99.5 99.0 98.0 92.5 100.0 99.0 98.0 0.0 67 甘肃 97.0 85.0 86.0 96.2 89.3 97.0 100 59.6 84 青海 96.3 90.6 86.0 93.1 96.1 95.0 98.0 64.9 85 新疆 97.1 87.2 98.0 96.9 86.2 100 99.0 79.3 91 -
洪志国,李焱,范植华等,2002. 层次分析法中高阶平均随机一致性指标(RI)的计算. 计算机工程与应用,38(12):45−47,150. doi: 10.3321/j.issn:1002-8331.2002.12.017Hong Z. G., Li Y., Fan Z. H., et al., 2002. Caculation on high-ranked RI of analytic hierarchy process. Computer Engineering and Applications, 38(12): 45−47,150. (in Chinese) doi: 10.3321/j.issn:1002-8331.2002.12.017 侯风垒,2022. 基于层次分析法和模糊综合评价法的应急管理能力综合评价研究. 现代城市轨道交通,(9):87−92. doi: 10.12042/j.issn.1672-7533.2022.9.xdcsgdjt202209016Hou F. L., 2022. Research on comprehensive evaluation of emergency management capability based on AHP (analytic hierarchy process) and FCA (fuzzy comprehensive assessment). Modern Urban Transit, (9): 87−92. (in Chinese) doi: 10.12042/j.issn.1672-7533.2022.9.xdcsgdjt202209016 黄鹤凌,张宝剑,巫立华等,2017. 利用地震噪声评价台网运行状态. 信息记录材料,18(10):83−85. 焦树锋,2006. AHP法中平均随机一致性指标的算法及MATLAB实现. 太原师范学院学报(自然科学版),5(4):45−47.Jiao S. F., 2006. The algorithm of mean random consistency index in AHP and its Implementation. Journal of Taiyuan Normal University (Natural Science Edition), 5(4): 45−47. (in Chinese) 李光科,巩浩波,陈敏等,2021. 地震台站防雷效能评估标准设计. 地震科学进展,51(10):452−460. doi: 10.3969/j.issn.2096-7780.2021.10.002Li G. K., Gong H. B., Chen M., et al., 2021. Design of evaluation standard for lightning protection effectiveness of seismic station. Progress in Earthquake Sciences, 51(10): 452−460. (in Chinese) doi: 10.3969/j.issn.2096-7780.2021.10.002 刘永强,郭宏杰,王啸等,2012. 太钢防震观测站大地电场观测系统运行评价. 山西地震,(4):33−36. doi: 10.3969/j.issn.1000-6265.2012.04.014Liu Y. Q., Guo H. J., Wang X., et al., 2012. Evaluation on running of observation system of earth's electric field at Taigang seismological station. Earthquake Research in Shanxi, (4): 33−36. (in Chinese) doi: 10.3969/j.issn.1000-6265.2012.04.014 乔荣庆,2009. 基于层次分析法和模糊综合评价法的信息安全风险评估研究与应用. 西安:西安电子科技大学,20−27.Qiao R. Q. , 2009. Research and application on information security risk assessment based on AHP and FCE. Xi’an: Xidian University, 20−27. (in Chinese) 任钟毓,王博宇,谢屹等,2017. 基于层次分析法的全国陆生野生动物疫源疫病监测站能力评估研究. 林业经济,39(10):85−88,103.Ren Z. Y., Wang B. Y., Xie Y., et al., 2017. Study on the evaluation of national terrestrial wildlife epidemic source and disease monitoring stations based on the analytic hierarchy process. Forestry Economics, 39(10): 85−88,103. (in Chinese) 杨陈,2018. 地震预警设计中的若干系统工程问题研究. 北京:中国地震局地球物理研究所,93−98.Yang C. , 2018. Some system engineering problems research for earthquake early warning design. Beijing: Institute of Geophysics, China Earthquake Administration, 93−98. (in Chinese) 张晁军,陈会忠,蔡晋安等,2014. 地震预警工程的若干问题探讨. 工程研究-跨学科视野中的工程,6(4):344−370. doi: 10.3724/SP.J.1224.2014.00344Zhang C. J., Chen H. Z., Cai J. A., et al., 2014. Discussion on some issues of earthquake early warning engineering. Journal of Engineering Studies, 6(4): 344−370. (in Chinese) doi: 10.3724/SP.J.1224.2014.00344 张红才,2013. 地震预警系统关键技术研究. 哈尔滨:中国地震局工程力学研究所,31−33.Zhang H. C. , 2013. Study of key technologies in earthquake early warning system. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 31−33. (in Chinese) -