Research on the Rational Setting of Deformation Joints in Submarine Mining Tunnel under Normal Fault Dislocation
-
摘要: 我国地理地质条件复杂多样,断裂带分布广泛,隧道建设常不可避免地穿越活动断裂带。本文以胶州湾第二海底隧道工程为背景,建立隧道-断层三维有限元模型,研究正断层作用下隧道变形缝设置形式(垂直设缝和斜向设缝)、模筑长度(6、12 m)和变形缝宽度(0.1、0.2 m)对跨断层隧道在断层错动作用下的结构受力及位移影响。研究结果表明,垂直设缝既增强隧道的抗断错能力,又适用于工程实际施工;相较于模筑长度为12 m的变形缝间距,模筑长度为6 m的变形缝间距对隧道错台变形有明显的抑制作用,能有效缓解隧道与断层带交界处错台量突变;本工程中变形缝宽度为0.1、0.2 m无明显优劣。Abstract: To investigate seismic measures for tunnels crossing fault zones, a three-dimensional finite element model was developed to analyze the effects of deformation joint configurations. Three key factors were examined: the form of deformation joints (vertical and oblique), joint length (6 m and 12 m), and joint width (0.1 m and 0.2 m). The results indicate that there is no significant difference between vertical and oblique joints, with vertical joints being more suitable for practical construction. A joint spacing of 6m provides better deformation resistance than 12m, effectively mitigating abrupt changes at the tunnel-fault zone interface. Additionally, the deformation joint width (0.1 m versus 0.2 m) showed no notable advantages under the selected conditions. This study offers valuable insights into the design of longitudinal deformation joints for tunnels crossing fault zones.
-
Key words:
- Mine method /
- Tunnels /
- Active faults /
- Anti-staggering /
- Deformation joints /
- Joint arrangement
1)1 1 中铁第四勘察设计院集团有限公司,2018.《胶州湾第二海底隧道工程场地地震安全性评价报告》2)2 2 中铁第四勘察设计院集团有限公司,2018.《青岛第二海底隧道工程可行性研究报告》 -
表 1 地层物理力学参数
Table 1. Physical and mechanical parameters of stratum
岩土名称 厚度/m 容重/(kN·m−3) 泊松比 弹性模量/MPa 黏聚力/kPa 内摩擦角/(°) 淤泥 15 18 0.4 5 15 2 粉质黏土 25 20 0.3 30 17 7 中风化花岗岩 60 24.8 0.25 15 000 — — 中风化正长岩 30 26 0.2 12 000 — — 断层破碎带 — 26 0.35 200 18 50 表 2 变形缝设计工况
Table 2. Design cases of deformation joints
工况 隧道埋深/m 模筑长度/m 变形缝形式 变形缝宽度/m 1 80 6 垂直隧道轴线 0.1 2 80 6 垂直隧道轴线 0.2 3 80 6 与隧道轴线斜交 0.1 4 80 6 与隧道轴线斜交 0.2 5 80 12 垂直隧道轴线 0.1 6 80 12 垂直隧道轴线 0.2 7 80 12 与隧道轴线斜交 0.1 8 80 12 与隧道轴线斜交 0.2 -
耿萍,何悦,何川等,2014. 穿越断层破碎带隧道合理抗震设防长度研究. 岩石力学与工程学报,33(2):358−365.Geng P., He Y., He C., et al., 2014. Research on reasonable aseismic fortified length for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 33(2): 358−365. (in Chinese) 梁文灏,李国良,2004. 乌鞘岭特长隧道方案设计. 现代隧道技术,41(2):1−7.Liang W. H., Li G. L., 2004. Tentative project of Wushaoling tunnel. Modern Tunnelling Technology, 41(2): 1−7. (in Chinese) 刘学增,王煦霖,林亮伦,2013. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究. 岩石力学与工程学报,32(8):1714−1720.Liu X. Z., Wang X. L., Lin L. L., 2013. Model experiment on effect of normal fault with 75° dip angle stick-slip dislocation on highway tunnel. Chinese Journal of Rock Mechanics and Engineering, 32(8): 1714−1720. (in Chinese) 刘学增,王煦霖,林亮伦,2014. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究. 土木工程学报,47(2):121−128.Liu X. Z., Wang X. L., Lin L. L., 2014. Model experimental study on influence of normal fault with 60° dip angle stick slip dislocation on mountain tunnel. China Civil Engineering Journal, 47(2): 121−128. (in Chinese) 刘学增,刘金栋,李学锋等,2015. 逆断层铰接式隧道衬砌的抗错断效果试验研究. 岩石力学与工程学报,34(10):2083−2090.Liu X. Z., Liu J. D., Li X. F., et al., 2015. Experimental research on effect of anti-dislocation of highway tunnel lining with hinge joints in thrust fault. Chinese Journal of Rock Mechanics and Engineering, 34(10): 2083−2090. (in Chinese) 孙飞,2019. 穿越活断层地铁隧道结构损伤破坏机理及抗错动性能研究. 成都:西南交通大学.Sun F., 2019. Study on damage and fracture mechanism and anti-displacement performance of metro tunnels passing through active faults. Chengdu:Southwest Jiaotong University. (in Chinese) 杨晓芳,李玉倩,吴金刚,2022. 某高速深埋隧道断层构造带围岩变形破坏分析与防控. 公路交通科技,39(6):103−110,118.Yang X. F., Li Y. Q., Wu J. G., 2022. Analysis on deformation failure and prevention of surrounding rock in fault structural zone of a deep-buried tunnel on an expressway. Journal of Highway and Transportation Research and Development, 39(6): 103−110,118. (in Chinese) 赵武胜,何先志,陈卫忠等,2012. 盾构隧道地震响应分析方法及工程应用. 岩土力学,33(8):2415−2421.Zhao W. S., He X. Z., Chen W. Z., et al., 2012. Method for analyzing seismic response of shield tunnel and its application. Rock and Soil Mechanics, 33(8): 2415−2421. (in Chinese) 庄海洋,唐柏赞,余冰雁等,2023. 地下结构抗震与减隔震研究进展与展望. 震灾防御技术,18(1):1−12.Zhuang H. Y., Tang B. Z., Yu B. Y., et al., 2023. Review and prospect of earthquake resistance and seismic isolation of underground structures. Technology for Earthquake Disaster Prevention, 18(1): 1−12. (in Chinese) Anastasopoulos I., Gerolymos N., Drosos V., et al., 2008. Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking. Bulletin of Earthquake Engineering, 6(2): 213−239. doi: 10.1007/s10518-007-9055-0 Bray J. D., Seed R. B., Cluff L. S., et al., 1994. Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3): 543−561. doi: 10.1061/(ASCE)0733-9410(1994)120:3(543) Parsons T., Stein R. S., Simpson R. W., et al., 1999. Stress sensitivity of fault seismicity: a comparison between limited-offset oblique and major strike-slip faults. Journal of Geophysical Research: Solid Earth, 104(B9): 20183−20202. doi: 10.1029/1999JB900056 Sibson R. H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3): 191−213. doi: 10.1144/gsjgs.133.3.0191 Wang Q., Geng P., Li P. S., et al., 2023. Failure analysis and dislocation-resistant design parameters of mining tunnel under normal faulting. Engineering Failure Analysis, 143: 106902. doi: 10.1016/j.engfailanal.2022.106902 Zhong Z. L., Wang Z., Zhao M., et al., 2020. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement. Tunnelling and Underground Space Technology, 104: 103527. doi: 10.1016/j.tust.2020.103527 -