• ISSN 1673-5722
  • CN 11-5429/P

黄河冲积平原细粒土小应变剪切模量试验研究

王津津 王志才 高涛 宋润钊

王津津,王志才,高涛,宋润钊,2024. 黄河冲积平原细粒土小应变剪切模量试验研究. 震灾防御技术,19(4):675−684. doi:10.11899/zzfy20240404. doi: 10.11899/zzfy20240404
引用本文: 王津津,王志才,高涛,宋润钊,2024. 黄河冲积平原细粒土小应变剪切模量试验研究. 震灾防御技术,19(4):675−684. doi:10.11899/zzfy20240404. doi: 10.11899/zzfy20240404
Wang Jinjin, Wang Zhicai, Gao Tao, Song Runzhao. Experimental Study on Small Strain Shear Modulus of Fine Grained Soil in the Yellow River Alluvial Plain[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 675-684. doi: 10.11899/zzfy20240404
Citation: Wang Jinjin, Wang Zhicai, Gao Tao, Song Runzhao. Experimental Study on Small Strain Shear Modulus of Fine Grained Soil in the Yellow River Alluvial Plain[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 675-684. doi: 10.11899/zzfy20240404

黄河冲积平原细粒土小应变剪切模量试验研究

doi: 10.11899/zzfy20240404
基金项目: 国家自然科学基金项目(YB2308、41974105、YW2304)
详细信息
    作者简介:

    王津津,女,生于1983年。工程师,硕士。主要从事土动力学及年代学方面的研究工作。E-mail:byewjj@163.com

Experimental Study on Small Strain Shear Modulus of Fine Grained Soil in the Yellow River Alluvial Plain

  • 摘要: 本文通过采用原位波速法、弯曲元试验法和共振柱试验法,深入探讨了室内测试与原位波速法在小应变剪切模量试验中的差异。选取山东省境内黄河冲积平原典型场地细粒土钻孔资料,统计原位波速法和室内测试2种测试手段测得的剪切波速,并对测试结果进行对比分析。研究结果表明,在保持土的有效应力状态和减少土样扰动的基础上,原位波速法、弯曲元试验法和共振柱试验法测得的小应变剪切模量总体趋势一致,原位波速法的结果普遍小于室内测试的结果,但相对误差大多不超过10%。其中弯曲元试验法测试细粒土得到的小应变剪切模量与原位波速法的结果更为接近。建议工程实践中采用弯曲元试验法快速测得细粒土小应变剪切模量。将Rampello的经验公式描述的小应变剪切模量与实测结果进行对比,给出相关土层经验参数。研究结果可为该地区地下工程计算分析中小应变剪切模量的估算提供参考。
  • 图  1  RCA型共振柱试验系统结构布置图

    Figure  1.  Layout of RCA type resonance column test system structure layout

    图  2  安装弯曲元的共振柱压力室剖面结构图

    Figure  2.  Resonance column pressure chamber profile structure for installing bending element

    图  3  内置于共振柱的弯曲元结构示意图

    Figure  3.  Schematic diagram of the curved element structure built into the resonant column

    图  4  PS声波测井示意图

    Figure  4.  PS sonic logging diagram

    图  5  现场测试及取土点地理空间分布图

    Figure  5.  Field test and geospatial distribution of sampling sites

    图  6  K23号钻孔土层剪切波速列图

    Figure  6.  Shear wave velocity diagram of borehole K23

    图  7  剪切波速的原位波速法与室内试验结果对比

    Figure  7.  Comparison of test results of shear wave velocity in situ to in laboratory

    图  8  剪切模量的实测平均值与预测值的对比

    Figure  8.  Comparison between the measured mean value and the predicted value of shear modulus

    表  1  试样参数

    Table  1.   Specimen parameters

    取土地点 土样编号 取样深度/m 天然含水率/% 天然重度/(g·cm−3) 固结压力/kPa 土类 颜色状态
    陵城区K23-12.824.32.050粉土褐黄色,中密
    K23-23.837.31.950粉质黏土黄褐色,可塑
    K23-38.830.42.0100粉质黏土黄褐色,可塑
    K23-416.035.12.0160淤泥质土黑灰色,可塑~软塑
    K23-630.824.52.1300粉质黏土褐黄色,可塑
    K23-736.822.92.1370粉土褐黄色,中密
    K23-944.827.92.0450粉质黏土褐黄色,可塑
    K23-1049.820.02.1500粉砂褐黄色,密实
    K23-1460.822.52.1600黏质粉土褐黄色,可塑~硬塑
    K23-1664.820.42.1650粉质黏土黄褐色,硬塑
    K23-1767.819.51.9680粉砂褐黄色,密实
    庆云县K19-27.821.72.0100粉质黏土黄褐色,可塑
    K19-313.824.32.1140粉质黏土褐黄色,可塑
    K19-416.820.82.1170粉质黏土褐黄色,可塑
    K19-521.022.02.1200黏土黄褐色,可塑~硬塑
    K19-732.027.72.0300粉质黏土褐色,可塑~硬塑
    K19-835.820.12.1350粉土黄色,中密
    K19-942.827.32.0450粉质黏土褐黄色,可塑~硬塑
    K19-1148.825.12.0500粉质黏土黄褐色,硬塑
    K19-1255.837.52.0550黏土褐色,硬塑
    注:原位波速法钻孔为取样钻孔。
    下载: 导出CSV

    表  2  3种方法剪切波速测试结果对比

    Table  2.   Comparison of shear wave velocity test results from three methods

    取土点 测试深度/m 土层性质 现场测试结果/
    (m·s−1)
    弯曲元测试结果/
    (m·s−1)
    共振柱测试结果/
    (m·s−1)
    相对误差/%
    现场与弯曲元 现场与共振柱 弯曲元与共振柱
    陵城区 2.8 粉土 164.0 170.9 201.9 4.2 23.1 18.1
    3.8 粉质黏土 164.0 161.1 169.17 1.7 3.2 5.0
    8.8 粉质黏土 179.0 191.0 231.2 6.7 29.2 21.1
    16.0 淤泥质土 229.0 234.0 254.6 2.2 11.2 8.8
    30.8 黏质粉土 307.0 310.0 282.8 1.0 7.9 8.8
    36.8 粉土 337.0 355.0 323.0 5.3 4.2 9.0
    44.8 粉质黏土 355.0 360.0 345.9 1.4 2.6 3.9
    49.8 粉砂 348.0 335.0 324.7 3.7 6.7 3.1
    60.8 黏质粉土 377.0 402.0 412.0 6.6 9.3 2.5
    64.8 粉质黏土 434.0 431.0 453.0 0.7 4.4 5.1
    67.8 粉砂 408.0 425.3 446.9 4.2 9.5 5.1
    庆云县 7.8 黏质粉土 168.0 187.5 207.3 11.6 23.4 10.6
    13.8 粉质黏土 182.0 238.7 242.4 31.2 33.2 1.6
    16.8 粉质黏土 211.0 230.8 250.6 9.4 18.8 8.6
    21.0 黏土 231.0 214.8 243.7 −7.0 5.5 13.4
    32.0 粉质黏土 298.0 276.3 315.0 −7.3 5.7 14.0
    35.8 粉土 311.0 281.9 277.8 −9.4 −10.7 −1.4
    42.8 粉质黏土 335.0 347.7 344.6 3.8 2.9 −0.9
    48.8 粉质黏土 357.0 342.3 365.2 −4.1 2.3 6.7
    55.8 黏土 365.0 370.8 395.1 1.6 8.3 6.6
    下载: 导出CSV

    表  3  3种测试手段得到的土体小应变剪切模量Gmax

    Table  3.   The small strain shear modulus of soil mass obtained with three testing methods

    取样点测试深度/m土层性质弯曲元Gmax/MPa共振柱Gmax/MPa现场测试Gmax/MPa
    陵城区3.8粉质黏土51.449.654.7
    8.8粉质黏土64.773.7108.0
    16.0淤泥质土102.8107.3127.0
    30.8黏质粉土198.9202.8168.7
    36.8粉土240.8267.2221.2
    44.8粉质黏土254.6261.8241.7
    49.8粉砂253.1234.6220.4
    60.8黏质粉土298.5339.4356.5
    64.8粉质黏土391.8386.4426.8
    67.8粉砂322.9350.9387.5
    7.8黏质粉土56.270.085.5
    庆云县13.8粉质黏土69.9120.2124.0
    16.8粉质黏土94.8113.4133.7
    21.0黏土113.798.3126.5
    32.0粉质黏土173.2148.9193.5
    35.8粉土200.2164.5159.7
    42.8粉质黏土226.7244.2239.9
    48.8粉质黏土256.2235.4268.1
    55.8黏土261.1269.4306.0
    下载: 导出CSV

    表  4  土体经验参数Sn取值

    Table  4.   Values of soil empirical parameters S and n

    数据类别试验方法ef(e)Sn参考文献
    经验值三轴试验、共振柱试验0.5~6.2$ {\left(1+e\right)}^{-2.4} $15000500000.5Vardanega等(2013
    本次测试单孔波速测试0.7~1.13$ {\left(1+e\right)}^{-2.4} $30000450000.5本文结果
    下载: 导出CSV
  • 柏立懂,项伟,Savidis A. S. 等,2012. 干砂最大剪切模量的共振柱与弯曲元试验. 岩土工程学报,34(1):184−188.

    Bai L. D., Xiang W., Savidis A. S., et al., 2012. Resonant column and bender element tests on maximum shear modulus of dry sand. Chinese Journal of Geotechnical Engineering, 34(1): 184−188. (in Chinese)
    陈旭庚,田家勇,王恩福等,2007. 基于小波分析的场地波速测量方法. 地震工程与工程振动,27(1):159−163. doi: 10.3969/j.issn.1000-1301.2007.01.025

    Chen X. G., Tian J. Y., Wang E. F., et al., 2007. Wave-velocity logging based on wavelet analysis. Journal of Earthquake Engineering and Engineering Vibration, 27(1): 159−163. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.01.025
    陈云敏,周燕国,黄博,2006. 利用弯曲元测试砂土剪切模量的国际平行试验. 岩土工程学报,28(7):874−880. doi: 10.3321/j.issn:1000-4548.2006.07.013

    Chen Y. M., Zhou Y. G., Huang B., 2006. International parallel test on the measurement of shear modulus of sand using bender elements. Chinese Journal of Geotechnical Engineering, 28(7): 874−880. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.013
    董全杨,蔡袁强,徐长节等,2013. 干砂饱和砂小应变剪切模量共振柱弯曲元对比试验研究. 岩土工程学报,35(12):2283−2289.

    Dong Q. Y., Cai Y. Q., Xu C. J., et al., 2013. Measurement of small−strain shear modulus G max of dry and saturated sands by bender element and resonant column tests. Chinese Journal of Geotechnical Engineering, 35(12): 2283−2289. (in Chinese)
    方怡,赵京轶,吕悦军等,2016. 唐山地区剪切波速现场测试和室内测试值差异研究. 工程勘察,44(8):7−10.

    Fang Y., Zhao J. Y., Lv Y. J., et al., 2016. Study on the difference of shear wave velocity values between field tests and laboratory tests in Tangshan area. Geotechnical Investigation & Surveying, 44(8): 7−10. (in Chinese)
    冯志仁,郭德存,刘红帅等,2007. 最大剪切模量对土动力参数及地震反应的影响. 自然灾害学报,16(3):90−95. doi: 10.3969/j.issn.1004-4574.2007.03.017

    Feng Z. R., Guo D. C., Liu H. S., et al., 2007. Influence of maximum shear modulus on dynamic parameters and seismic response of soil layer. Journal of Natural Disasters, 16(3): 90−95. (in Chinese) doi: 10.3969/j.issn.1004-4574.2007.03.017
    胡庆兴,刘雪珠,从卫民等,2003. 淮安市典型土动力特性的试验研究. 地震工程与工程振动,23(6):144−148. doi: 10.3969/j.issn.1000-1301.2003.06.023

    Hu Q. X., Liu X. Z., Cong W. M., et al., 2003. Experimental study on dynamic property of typical soils for Huaian City. Earthquake Engineering and Engineering Vibration, 23(6): 144−148. (in Chinese) doi: 10.3969/j.issn.1000-1301.2003.06.023
    姬美秀,陈云敏,黄博,2003. 弯曲元试验高精度测试土样剪切波速方法. 岩土工程学报,25(6):732−736. doi: 10.3321/j.issn:1000-4548.2003.06.019

    Ji M. X., Chen Y. M., Huang B., 2003. Method for precisely determining shear wave velocity of soil from bender element tests. Chinese Journal of Geotechnical Engineering, 25(6): 732−736. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.06.019
    汪云龙,袁晓铭,李晓飞,2014. GDS-RCA型共振柱仪常规实验可靠性研究. 地震工程与工程振动,34(1):95−99.

    Wang Y. L., Yuan X. M., Li X. F., 2014. Reliability analysis of the tests by GDS-RCA resonant column apparatus. Earthquake Engineering and Engineering Dynamics, 34(1): 95−99. (in Chinese)
    尹松,孔令伟,张先伟,2017. 炎热多雨气候影响下残积土小应变刚度特性试验研究. 岩土工程学报,39(4):743−751. doi: 10.11779/CJGE201704021

    Yin S., Kong L. W., Zhang X. W., 2017. Experimental study on stiffness characteristics of residual soil at small strain under hot and rainy climate. Chinese Journal of Geotechnical Engineering, 39(4): 743−751. (in Chinese) doi: 10.11779/CJGE201704021
    Brignoli E. G. M., Gotti M., Stokoe II K. H., 1996. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers. Geotechnical Testing Journal, 19(4): 384−397. doi: 10.1520/GTJ10716J
    Burland J. B., Longworth T. I., Moore J. F. A., 1977. A study of ground movement and progressive failure caused by a deep excavation in Oxford clay. Géotechnique, 27(4): 557−591.
    Clayton C. , 1998. The stiffness of soils and weak rocks at very small strains. Guildford: University of Surrey.
    Imai T. , Tonouchi K. , 1982. Correlation of N value with S-wave velocity and shear modulus. In: Proceedings of 2nd European Symposium on Penetration Testing. Rotterdam: A. A. Balkema, 68−72.
    Rampello S., Viggiani G. M. B., Amorosi A., 1997. Small-strain stiffness of reconstituted clay compressed along constant triaxial effective stress ratio paths. Géotechnique, 47(3): 475−489.
    Seed H. B. , Idriss I. M. , 1970. Soil moduli and damping factors for dynamic response analyses. Berkeley: University of California.
    Shirley D. J., Hampton L. D., 1978. Shear-wave measurements in laboratory sediments. The Journal of the Acoustical Society of America, 63(2): 607−613. doi: 10.1121/1.381760
    Vardanega P. J., Bolton M. D., 2013. Stiffness of clays and silts: normalizing shear modulus and shear strain. Journal of Geotechnical and Geoenvironmental Engineering, 139(9): 1575−1589. doi: 10.1061/(ASCE)GT.1943-5606.0000887
    Yang J. , Gu X. Q. , 2013. Shear stiffness of granular material at small strains: does it depend on grain size? Géotechnique, 63 (2): 165−179.
    Youn J. U., Choo Y. W., Kim D. S., 2008. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests. Canadian Geotechnical Journal, 45(10): 1426−1438. doi: 10.1139/T08-069
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回