• ISSN 1673-5722
  • CN 11-5429/P

模块化变电站预制舱隔震设计及隔震效果分析

程智余 胡晨 曾天舒 胡广润 朱灿 冯玉龙 曾志豪

程智余,胡晨,曾天舒,胡广润,朱灿,冯玉龙,曾志豪,2024. 模块化变电站预制舱隔震设计及隔震效果分析. 震灾防御技术,19(3):588−600. doi:10.11899/zzfy20240317. doi: 10.11899/zzfy20240317
引用本文: 程智余,胡晨,曾天舒,胡广润,朱灿,冯玉龙,曾志豪,2024. 模块化变电站预制舱隔震设计及隔震效果分析. 震灾防御技术,19(3):588−600. doi:10.11899/zzfy20240317. doi: 10.11899/zzfy20240317
Cheng Zhiyu, Hu Chen, Zeng Tianshu, Hu Guangrun, Zhu Can, Feng Yulong, Zeng Zhihao. Seismic Isolation Design and Effectiveness Analysis of Prefabricated Cabins in Modular Substations[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 588-600. doi: 10.11899/zzfy20240317
Citation: Cheng Zhiyu, Hu Chen, Zeng Tianshu, Hu Guangrun, Zhu Can, Feng Yulong, Zeng Zhihao. Seismic Isolation Design and Effectiveness Analysis of Prefabricated Cabins in Modular Substations[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 588-600. doi: 10.11899/zzfy20240317

模块化变电站预制舱隔震设计及隔震效果分析

doi: 10.11899/zzfy20240317
基金项目: 国网安徽省电力有限公司科技项目(521209220006)
详细信息
    作者简介:

    程智余,男,生于1966年。硕士,高级工程师。主要研究方向为智能变电站技术、工程建设管理等。E-mail:chengzy1715@ah.sgcc.com.cn

    通讯作者:

    冯玉龙,男,生于1990年。副教授,硕士生导师。主要从事结构工程和工程抗震研究。E-mail:fylhfut@hfut.edu.cn

Seismic Isolation Design and Effectiveness Analysis of Prefabricated Cabins in Modular Substations

  • 摘要: 变电站属于生命线工程,某模块化变电站的一次设备预制舱底部设有钢构架,舱内设备单列布置,有必要研究并提升这种带钢构架预制舱结构及设备的抗震性能。首先,采用有限元软件ABAQUS进行地震作用下非隔震结构的非线性时程分析;然后,对该工程进行隔震设计并对比了隔震结构和非隔震结构的地震响应;最后,考虑钢构架刚度和隔震支座位置2个因素,在隔震结构的基础上进行参数化分析。结果表明,相较于非隔震结构,经设计的隔震结构延长了结构基本周期,在地震作用下具有较好的加速度和位移控制效果;针对本文选取的研究对象,钢构架截面采用H140结构会通过钢构架变形耗散地震能量,隔震支座不能充分发挥作用;相比于隔震支座布置于柱顶结构,布置于柱底结构具有更好的设备加速度和舱体位移控制效果,然而隔震支座会出现拉力。因此,建议此类结构隔震设计时,隔震支座的下部钢构架应具备一定刚度(当构架上部舱体重量为25 t时,底部构架刚度建议不小于3615 kN/m),隔震支座位置需综合考虑隔震支座受力和隔震效果。
  • 图  1  底部带钢构架预制舱舱体结构

    Figure  1.  Prefabricated cabin structure with steel frame at base

    图  2  舱体平面及立面图 (单位: 毫米)

    Figure  2.  Plan and cross sections of cabin(Unit: mm)

    图  3  预制舱结构有限元模型

    Figure  3.  Finite element model of prefabricated cabin structure

    图  4  地震动加速度时程

    Figure  4.  Time history of ground motion acceleration

    图  5  地震动加速度反应谱

    Figure  5.  Acceleration response spectrum of ground motions

    图  6  非隔震结构的1、2阶振型

    Figure  6.  First-and second-order modes of vibration in non-seismically isolated structure

    图  7  地震波PEER RSN 1082作用下非隔震结构时程曲线

    Figure  7.  Time-distance curves of non-isolated structures under the action of PEER RSN 1082

    图  8  隔震设计基本流程

    Figure  8.  Basic process of isolation design

    图  9  隔震支座布置形式

    Figure  9.  Layout of isolation bearing

    图  10  隔震层相对位移峰值

    Figure  10.  Peak relative displacement of isolation layer

    图  11  隔震支座竖向力时程响应

    Figure  11.  Time history response of isolation bearing vertical force

    图  12  隔震结构的1、2阶振型

    Figure  12.  First-and second-order modes of vibration-isolated structure

    图  13  非隔震和隔震结构x方向位移云图

    Figure  13.  Displacement cloud chart of non-isolation and isolation structures in x direction

    图  14  预制舱层间位移角

    Figure  14.  Inter-story drift of prefabricated cabin

    图  15  设备最不利点处绝对加速度对比

    Figure  15.  Comparison of absolute acceleration at the most unfavorable point of equipment

    图  16  非隔震和隔震结构PEEQ云图

    Figure  16.  PEEQ cloud chart of non-isolation and isolation structure

    图  17  参数化模型示意图

    Figure  17.  Schematic diagram of parametric models

    图  18  不同构架截面尺寸下设备峰值加速度响应

    Figure  18.  Equipment peak acceleration response for different frame section sizes

    图  19  不同构架截面尺寸下舱体峰值位移响应

    Figure  19.  Cabin peak displacement responses for different frame section sizes

    图  20  LRB (1)支座下钢柱的剪力-位移曲线

    Figure  20.  Shear-displacement curves for steel columns under LRB (1) bearing

    图  21  LRB (1)支座x方向力-相对位移曲线

    Figure  21.  Curves of x-direction force - relative displacement for LRB (1) bearing

    图  22  不同隔震支座布置方式下设备峰值加速度响应

    Figure  22.  Equipment peak acceleration responses for different isolation bearing layouts

    图  23  不同隔震支座布置方式下舱体峰值位移响应

    Figure  23.  Cabin peak displacement responses for different isolation bearing layouts

    图  24  LNR (1)竖向力时程响应

    Figure  24.  Time history responses of LNR (1) vertical force

    表  1  预制舱结构材料属性

    Table  1.   Structural material properties of prefabricated cabin

    材料 弹性模量
    /(N·mm−2)
    泊松比 屈服强度
    /MPa
    屈服后
    刚度比/%
    密度
    /(kg·m−3)
    Q235 2.1×105 0.3 235 1 7850
    设备 2.1×105 0.3 499
    下载: 导出CSV

    表  2  地震波基本参数

    Table  2.   Basic parameters of ground motions

    地震动ID(编号) 地震事件 年份 记录台站 震级 PGA/g 时间间隔/s 持时/s
    PEER RSN 558 (1) Chalfant Valley-02 1986 Zack Brothers Ranch 6.19 0.447 0.005 39.995
    PEER RSN 762 (2) Loma Prieta 1989 Fremont - Mission San Jose 6.93 0.127 0.005 39.99
    PEER RSN 1082 (3) Northridge-01 1994 Sun Valley - Roscoe Blvd 6.69 0.277 0.01 30.28
    PEER RSN 4139 (4) Parkfield-02, CA 2004 PARKFIELD - UPSAR 02 6 0.173 0.005 60
    PEER RSN 5797 (5) Iwate 2008 Oomagari Hanazono-cho, Daisen 6.9 0.115 0.01 60
    CSMNC RSN 20100 (6) Wenchuan Earthquake 2008 051 FSB 8 0.032 0.005 276
    CSMNC RSN 23504 (7) Menyuan Earthquake 2016 063 ZMS 6.4 0.001 0.005 71
    下载: 导出CSV

    表  3  隔震支座力学参数

    Table  3.   Mechanical parameters of isolation bearing

    型号 有效直径/mm 竖向总刚度/(kN·mm−1) 100%等效水平刚度/(kN·mm−1) 屈服前刚度/(kN·mm−1) 屈服后刚度/(kN·mm−1) 屈服力/kN
    LNR 200 200 325 288
    LRB 200 200 476.8 543 3002 300 10
    下载: 导出CSV

    表  4  设备最不利点处峰值放大系数αi和峰值加速度减震系数βiso

    Table  4.   Peak absolute acceleration and peak amplification factor at the most unfavorable point of non-isolation structure

    地震动ID 非隔震结构 隔震结构
    aPGA/ g aMAX/ g αnon aPGA/ g aMAX/ g αiso βiso/ %
    PEER RSN 558 (1) 0.4 1.395 3.488 0.4 0.408 1.019 70.791
    PEER RSN 762 (2) 0.4 1.372 3.429 0.4 0.532 1.330 61.207
    PEER RSN 1082 (3) 0.4 1.700 4.250 0.4 0.535 1.337 68.550
    PEER RSN 4139 (4) 0.4 1.695 4.238 0.4 0.490 1.226 71.067
    PEER RSN 5797 (5) 0.4 1.257 3.142 0.4 0.525 1.313 58.207
    CSMNC RSN 20100 (6) 0.4 1.358 3.394 0.4 0.420 1.049 69.100
    CSMNC RSN 23504 (7) 0.4 1.546 3.865 0.4 0.340 0.850 77.998
    平均值 0.4 1.475 3.687 0.4 0.464 1.161 68.131
    下载: 导出CSV

    表  5  参数化模型信息

    Table  5.   Information of parametric models

    模型钢构架梁柱截面尺寸隔震支座布置形式
    标准H200居中布置于柱顶
    AH140居中布置于柱顶
    BH400居中布置于柱顶
    CH200外侧布置于柱顶
    DH200居中布置于柱底
    下载: 导出CSV
  • 陈永盛,姜冰,朱柏洁等,2022. 某典型二次设备预制舱地震反应时程分析. 建筑结构,52(S1):868−873.

    Chen Y. S., Jiang B., Zhu B. J., et al., 2022. Seismic response time history analyses of a typical prefabricated cabin for secondary combination device. Building Structure, 52(S1): 868−873. (in Chinese)
    种迅,郭宇菲,沙慧玲等,2024. 基础隔震-外挂墙板减震钢筋混凝土框架振动台试验研究. 工程力学,41(7):176−185.

    Chong X., Guo Y. F., Sha H. L., et al., 2024. Shaking table test of reinforced concrete frame structure with base seismic isolation-energy dissipative cladding panel hybrid control. Engineering Mechanics, 41(7): 176−185. (in Chinese)
    丁阳,邓恩峰,宗亮等,2018. 模块化集装箱建筑波纹钢板剪力墙抗震性能试验研究. 建筑结构学报,39(12):110−118.

    Ding Y., Deng E. F., Zong L., et al., 2018. Experimental study on seismic performance of corrugated steel plate shear wall in modular container construction. Journal of Building Structures, 39(12): 110−118. (in Chinese)
    窦辉,殷帅兵,王哲等,2019. 模块化预制舱设计与研究. 科技视界,(22):1−4,20.

    Dou H., Yin S. B., Wang Z., et al., 2019. Design and study of modular prefabricated tank. Science & Technology Vision, (22): 1−4,20. (in Chinese)
    李世权,2019. 钢模块波纹板墙体抗侧性能及设计方法研究. 天津:天津大学.

    Li S. Q., 2019. Research on anti-side performance and design method of steel module corrugated board wall. Tianjin:Tianjin University. (in Chinese)
    林文静,2021. 基于模块化技术的智能变电站设计. 济南:山东大学.

    Lin W. J., 2021. Design of intelligent substation based on modularization technology. Ji’nan:Shandong University. (in Chinese)
    刘如山,刘金龙,颜冬启等,2013. 芦山7.0级地震电力设施震害调查分析. 自然灾害学报,22(5):83−90.

    Liu R. S., Liu J. L., Yan D. Q., et al., 2013. Seismic damage investigation and analysis of electric power system in Lushan M S7.0 earthquake. Journal of Natural Disasters, 22(5): 83−90. (in Chinese)
    卢乐乐,2020. 基础隔震房屋结构的地震损伤与抗震性能分析. 太原:太原理工大学.

    Lu L. L., 2020. Earthquake damage and seismic performance analysis of base isolated building structure. Taiyuan:Taiyuan University of Technology. (in Chinese)
    莫素敏,2020. 海南中部地区模块化智能变电站方案研究与设计. 广州:华南理工大学.

    Mo S. M., 2020. Research and design of modular intelligent substation in central Hainan province. Guangzhou:South China University of Technology. (in Chinese)
    聂建春,张振,王安等,2018. 智能变电站预制舱在内蒙古地区的环境适应性分析. 内蒙古电力技术,36(2):6−10,15.

    Nie J. C., Zhang Z., Wang A., et al., 2018. Environmental adaptability analysis on intelligent substation prefabricated cabin in Inner Mongolia. Inner Mongolia Electric Power, 36(2): 6−10,15. (in Chinese)
    王化杰,李洋,雷炎祥等,2017. 装配式集装箱结构体系优化及节点性能. 哈尔滨工业大学学报,49(6):117−123.

    Wang H. J., Li Y., Lei Y. X., et al., 2017. System optimization of fabricated container structure and the joint performance. Journal of Harbin Institute of Technology, 49(6): 117−123. (in Chinese)
    王伟,刘笑天,2023. 装配式工业设备支架复合隔震结构振动台试验研究. 建筑结构学报,44(10):15−25.

    Wang W., Liu X. T., 2023. Shaking table test on hybrid isolation system of prefabricated industrial equipment supports. Journal of Building Structures, 44(10): 15−25. (in Chinese)
    王文渊,张同亿,2018. ABAQUS在超高层结构动力弹塑性分析的应用研究. 建筑结构,48(21):1−8,77.

    Wang W. Y., Zhang T. Y., 2018. Application study on ABAQUS in dynamic elasto-plastic analysis of super high-rise buildings. Building Structure, 48(21): 1−8,77. (in Chinese)
    吴从晓,杨渊,吴从永等,2019. 集装箱装配建筑减震结构及连接节点抗震性能分析研究. 钢结构,34(4):1−8,73.

    Wu C. X., Yang Y., Wu C. Y., et al., 2019. Research on seismic behavior analysis of shock absorbing structure and connecting joints of container assembly structures. Steel Construction, 34(4): 1−8,73. (in Chinese)
    吴从晓,杨渊,陈展鹏等,2020. 箱体改造后的模块化集装箱建筑减震结构性能分析. 工程抗震与加固改造,42(5):94−105.

    Wu C. X., Yang Y., Chen Z. P., et al., 2020. Performance analysis of shock absorbing structure of modular container building after container reconstruction. Earthquake Resistant Engineering and Retrofitting, 42(5): 94−105. (in Chinese)
    于永清,李光范,李鹏等,2008. 四川电网汶川地震电力设施受灾调研分析. 电网技术,32(11):T1−T6.

    Yu Y. Q., Li G. F., Li P., et al., 2008. Investigation and analysis of electric equipment damage in Sichuan power grid caused by Wenchuan earthquake. Power System Technology, 32(11): T1−T6. (in Chinese)
    查晓雄,左洋,刘乐等,2015. 地震作用下集装箱结构力学性能分析. 华南理工大学学报(自然科学版),43(7):92−99.

    Zha X. X., Zuo Y., Liu L., et al., 2015. Analysis of mechanical properties of container structure under earthquake action. Journal of South China University of Technology (Natural Science Edition), 43(7): 92−99. (in Chinese)
    祝德春,吴明,2016. 环境载荷下智能变电站预制舱结构强度有限元分析. 机械与电子,34(10):30−33,37.

    Zhu D. C., Wu M., 2016. Finite element analysis of structural strength of precast chamber for smart substation under environment load. Machinery & Electronics, 34(10): 30−33,37. (in Chinese)
    Zha X. X., Zuo Y., 2016. Theoretical and experimental studies on in-plane stiffness of integrated container structure. Advances in Mechanical Engineering, 8 (3): 1687814016637522. DOI: https://doi.org/10.1177/1687814016637522.
  • 加载中
图(24) / 表(5)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回