• ISSN 1673-5722
  • CN 11-5429/P

地铁系统地震次生火灾应急疏散研究

高惠瑛 刘兴利

高惠瑛,刘兴利,2025. 地铁系统地震次生火灾应急疏散研究. 震灾防御技术,20(2):430−440. doi:10.11899/zzfy20240243. doi: 10.11899/zzfy20240243
引用本文: 高惠瑛,刘兴利,2025. 地铁系统地震次生火灾应急疏散研究. 震灾防御技术,20(2):430−440. doi:10.11899/zzfy20240243. doi: 10.11899/zzfy20240243
Gao Huiying, Liu Xingli. Research on Emergency Evacuation of Earthquake Secondary Fire in the Subway System[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 430-440. doi: 10.11899/zzfy20240243
Citation: Gao Huiying, Liu Xingli. Research on Emergency Evacuation of Earthquake Secondary Fire in the Subway System[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 430-440. doi: 10.11899/zzfy20240243

地铁系统地震次生火灾应急疏散研究

doi: 10.11899/zzfy20240243
详细信息
    作者简介:

    高惠瑛,女,生于1967年。博士,教授,硕士生导师。主要从事城市应急管理方面的研究工作。E-mail:fqmghy@ouc.edu.cn

  • 1https://www.bilibili.com/video/av957969364/

Research on Emergency Evacuation of Earthquake Secondary Fire in the Subway System

  • 摘要: 破坏性地震常伴随地震次生灾害,后果严重。地铁系统作为城市重要通行设施,研究其在地震次生灾害下的应急疏散十分必要。本文以地震次生火灾为例,基于地震次生火灾特点,深入探讨地铁站人员疏散情况。利用Pyrosim软件建立地震次生火灾模型,分析地铁站内部温度、CO浓度、能见度等因素的变化,确定影响人员疏散的关键因素。在此基础上,使用Pathfinder软件建立人员疏散模型,研究关键因素人员疏散速度的影响,从而获得更准确的疏散动态。研究结果表明,能见度是影响人员疏散的关键因素;此外,楼/扶梯处能见度下降导致疏散速度降低,尤其是在靠近火源位置的楼/扶梯上,滞留时间显著增加。
    1)  1https://www.bilibili.com/video/av957969364/
  • 图  1  地铁站震后火灾应急疏散模拟框架

    Figure  1.  Framework of subway station post-shock fire emergency evacuation simulation

    图  2  大开地铁车站震害

    Figure  2.  Earthquake damage at Dakai subway station

    图  3  沧安路地铁站火灾模型

    Figure  3.  Fire model of Cang'anlu subway station

    图  4  沧安路地铁站各层内部布置情况示意图

    Figure  4.  Schematic diagram of the internal layout of each floor of Cang'anlu subway station

    图  5  各楼/扶梯温度变化曲线

    Figure  5.  Temperature change curve of escalators on each floor

    图  6  地铁站各层温度分布云图(360 s)

    Figure  6.  Temperature distribution cloud on each floor of the subway station (360 s)

    图  7  各楼/扶梯CO浓度变化曲线

    Figure  7.  CO concentration change curve of escalators on each floor

    图  8  地铁站各层CO浓度分布云图(360 s)

    Figure  8.  Cloud map of CO concentration distribution on each floor of the subway station (360 s)

    图  9  各楼/扶梯能见度变化曲线

    Figure  9.  The change curve of escalator visibility on each floor

    图  10  地铁站各层能见度分布云图(153 s)

    Figure  10.  Cloud map of visibility distribution on each floor of the subway station (153 s)

    图  11  能见度对疏散影响的分析流程

    Figure  11.  Analysis process of the impact of visibility on evacuation

    图  12  能见度-速度折减系数导入

    Figure  12.  Import of visibility-speed reduction factor

    图  13  总疏散时间

    Figure  13.  Total evacuation time

    图  14  疏散路径指定设置

    Figure  14.  Evacuation path specified settings

    图  15  疏散人员占用扶梯情况

    Figure  15.  Situation of occupying escalators by evacuees

    表  1  预测远期高峰客流量(单位:人/h)

    Table  1.   Peak passenger flow in the long term prediction(Unit: person/h)

    项目 下行方向 上行方向
    上车 下车 断面 上车 下车 断面
    客流量/(人·h−1) 2924 117 9991 108 2819 12125
    下载: 导出CSV

    表  2  人员特性表

    Table  2.   Personnel characteristics

    类别儿童成年男性成年女性老人
    步行速度/(m·s−10.791.281.150.86
    平均肩宽/cm33413839
    人员比例/%9413911
    下载: 导出CSV

    表  3  各楼/扶梯的能见度-速度折减系数

    Table  3.   The reduction coefficient of visibility of the escalators on each floor with speed

    时间/s折减系数
    1号扶梯2号楼梯3号楼梯2、3号楼梯4号扶梯
    01.001.001.001.001.00
    301.001.001.001.001.00
    601.001.001.001.001.00
    901.001.001.001.001.00
    1201.001.001.001.001.00
    1500.441.001.001.001.00
    1800.281.001.000.811.00
    2100.210.761.001.001.00
    2400.220.631.000.700.85
    2700.200.490.640.460.63
    3000.200.410.470.370.45
    3300.200.360.440.450.45
    3600.200.310.330.410.43
    下载: 导出CSV

    表  4  各区域滞留时间

    Table  4.   Stay time in each region

    滞留时间预反应站台层1号扶梯
    速度折减前60.0 s88.0 s53.5 s
    速度折减后60.0 s88.0 s64.1 s
    增长率0.0%0.0%19.8%
    下载: 导出CSV
  • 陈绍宽,狄月,史荣丹等,2017. 地铁车站站台火灾影响分析与人员疏散研究. 交通运输系统工程与信息,17(1):241−248.

    Chen S. K., Di Y., Shi R. D., et al., 2017. Simulation and analysis on impacts and evacuation during the process of fire on metro platforms. Journal of Transportation Systems Engineering and Information Technology, 17(1): 241−248. (in Chinese)
    陈素文,李国强,2008. 地震次生火灾的研究进展. 自然灾害学报,17(5):120−126. doi: 10.3969/j.issn.1004-4574.2008.05.020

    Chen S. W., Li G. Q., 2008. Advance in research on secondary fire of earthquake. Journal of Natural Disasters, 17(5): 120−126. (in Chinese) doi: 10.3969/j.issn.1004-4574.2008.05.020
    崔春义,许民泽,许成顺等,2025. 考虑地震需求统计不确定性的地铁车站结构地震易损性分析. 岩土工程学报,47(3):453−462. doi: 10.11779/CJGE20230980

    Cui C. Y., Xu M. Z., Xu C. S., et al., 2025. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands. Chinese Journal of Geotechnical Engineering, 47(3): 453−462. (in Chinese) doi: 10.11779/CJGE20230980
    杜修力,李洋,许成顺等,2018. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展. 岩土工程学报,40(2):223−236. doi: 10.11779/CJGE201802002

    Du X. L., Li Y., Xu C. S., et al., 2018. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake. Chinese Journal of Geotechnical Engineering, 40(2): 223−236. (in Chinese) doi: 10.11779/CJGE201802002
    李丹辰,钟茂华,梅棋等,2019. 地铁同站台高架换乘车站火灾人员疏散研究. 中国安全生产科学技术,15(6):5−11.

    Li D. C., Zhong M. H., Mei Q., et al., 2019. Study on personnel evacuation of fire in one-platform interchange elevated metro station. Journal of Safety Science and Technology, 15(6): 5−11. (in Chinese)
    李宇辉,费瑞振,2022. 地铁隧道火灾烟气蔓延和人员疏散效率研究. 铁道科学与工程学报,19(9):2776−2784.

    Li Y. H., Fei R. Z., 2022. Study on smoke spreading and evacuation efficiency in subway tunnel fire. Journal of Railway Science and Engineering, 19(9): 2776−2784. (in Chinese)
    陆新征,岳清瑞,许镇等,2024. 城市密集建筑区新型地震次生灾害研究进展. 工业建筑,54(2):25−34. doi: 10.3724/j.gyjzG23121501

    Lu X. Z., Yue Q. R., Xu Z., et al., 2024. A review on novel seismic secondary disasters in urban dense building areas. Industrial Construction, 54(2): 25−34. (in Chinese) doi: 10.3724/j.gyjzG23121501
    田向亮,钟茂华,陈俊沣等,2019. 地铁十字换乘车站全尺寸实验研究:Ⅰ. 站厅火灾. 中国安全生产科学技术,15(3):11−18.

    Tian X. L., Zhong M. H., Chen J. F., et al., 2019. Full-scale experimental study on cross transfer metro station: I. Station hall fire. Journal of Safety Science and Technology, 15(3): 11−18. (in Chinese)
    王国波,刘强,王鸿杰等,2022. 震后地下结构在火灾下的力学性能初步分析. 岩土工程学报,44(S2):30−35. doi: 10.11779/CJGE2022S2007

    Wang G. B., Liu Q., Wang H. J., et al., 2022. Preliminary analysis of mechanical properties of subway station under fire after earthquake. Chinese Journal of Geotechnical Engineering, 44(S2): 30−35. (in Chinese) doi: 10.11779/CJGE2022S2007
    王建国,刘颖,苏俊凯等,2019. 地铁火灾人员疏散行为影响因素研究. 消防科学与技术,38(5):706−709. doi: 10.3969/j.issn.1009-0029.2019.05.030

    Wang J. G., Liu Y., Su J. K., et al., 2019. Study on influencing factors of evacuation behavior in subway fire. Fire Science and Technology, 38(5): 706−709. (in Chinese) doi: 10.3969/j.issn.1009-0029.2019.05.030
    王建国,樊亦洋,刘颖等,2020. 地铁火灾群体恐慌对非适应性疏散行为影响研究. 消防科学与技术,39(6):856−859. doi: 10.3969/j.issn.1009-0029.2020.06.033

    Wang J. G., Fan Y. Y., Liu Y., et al., 2020. Study on the influence of group panic on non-adaptive evacuation behavior of passengers during a subway fire. Fire Science and Technology, 39(6): 856−859. (in Chinese) doi: 10.3969/j.issn.1009-0029.2020.06.033
    王凯,胡经纬,杨涛等,2022. 地铁站火灾烟流特性及协同集控系统. 中国安全科学学报,32(12):133−140.

    Wang K., Hu J. W., Yang T., et al., 2022. Fire smoke characteristics and collaborative control system in subway stations. China Safety Science Journal, 32(12): 133−140. (in Chinese)
    王起全,王帷先,2017. 地铁火灾应急疏散路线规划与对策. 中国安全生产科学技术,13(3):131−136.

    Wang Q. Q., Wang W. X., 2017. Planning and countermeasures of emergency evacuation route in subway fire. Journal of Safety Science and Technology, 13(3): 131−136. (in Chinese)
    王雨婷,田兵伟,左齐,2024. 城市道路交通网络韧性研究进展. 城市与减灾,(3):11−15. doi: 10.3969/j.issn.1671-0495.2024.03.004

    Wang Y. T., Tian B. W., Zuo Q., 2024. Research progress on network resilience of urban road traffic. City and Disaster Reduction, (3): 11−15. (in Chinese) doi: 10.3969/j.issn.1671-0495.2024.03.004
    文波,冯丽,2024. 机械排烟对室内变压器火灾燃烧特性的影响. 西安科技大学学报,44(6):1019−1029.

    Wen B., Feng L., 2024. Effect of mechanical smoke exhaust on combustion characteristics of indoor transformer fire. Journal of Xi'an University of Science and Technology, 44(6): 1019−1029. (in Chinese)
    吴佳梦,朱顺兵,郝雪彤等,2021. 地铁换乘站高峰期火灾及人员疏散模拟研究. 消防科学与技术,40(6):875−879. doi: 10.3969/j.issn.1009-0029.2021.06.022

    Wu J. M., Zhu S. B., Hao X. T., et al., 2021. Research on fire and evacuation simulation of subway transfer station during peak period. Fire Science and Technology, 40(6): 875−879. (in Chinese) doi: 10.3969/j.issn.1009-0029.2021.06.022
    杨鑫刚,单彩虹,陈学哲,2024. 地铁站应急疏散数值模拟研究. 安全与环境学报,24(1):250−256.

    Yang X. G., Shan C. H., Chen X. Z., 2024. Numerical simulation study of emergency evacuation in subway stations. Journal of Safety and Environment, 24(1): 250−256. (in Chinese)
    张立茂,吴贤国,李博文等,2018. 基于火灾模拟器和Pathfinder的地铁车站人员疏散. 科学技术与工程,18(4):203−209. doi: 10.3969/j.issn.1671-1815.2018.04.032

    Zhang L. M., Wu X. G., Li B. W., et al., 2018. Fire evacuation of subway station based on fire dynamics simulator and pathfinder. Science Technology and Engineering, 18(4): 203−209. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.04.032
    钟茂华,陈俊沣,陈嘉诚等,2019. 地铁十字换乘车站全尺寸实验研究:Ⅱ. 站台火灾. 中国安全生产科学技术,15(5):42−48.

    Zhong M. H., Chen J. F., Chen J. C., et al., 2019. Full-scale experimental study on cross transfer metro station: II. Platform fire. Journal of Safety Science and Technology, 15(5): 42−48. (in Chinese)
    钟紫蓝,申轶尧,郝亚茹等,2020. 基于IDA方法的两层三跨地铁地下结构地震易损性分析. 岩土工程学报,42(5):916−924. doi: 10.11779/CJGE202005014

    Zhong Z. L., Shen Y. Y., Hao Y. R., et al., 2020. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method. Chinese Journal of Geotechnical Engineering, 42(5): 916−924. (in Chinese) doi: 10.11779/CJGE202005014
    Cha M., Han S., Lee J., et al., 2012. A virtual reality based fire training simulator integrated with fire dynamics data. Fire Safety Journal, 50: 12−24. doi: 10.1016/j.firesaf.2012.01.004
    Fridolf K., Ronchi E., Nilsson D., et al., 2019. The representation of evacuation movement in smoke-filled underground transportation systems. Tunnelling and Underground Space Technology, 90: 28−41. doi: 10.1016/j.tust.2019.04.016
    Iida H., Hiroto T., Yoshida N., et al., 1996. Damage to Daikai subway station. Soils and Foundations, 36(Special): 283−300. doi: 10.3208/sandf.36.Special_283
    Kadokura H., Sekizawa A., Takahashi W., 2012. Study on availability and issues of evacuation using stopped escalators in a subway station. Fire and Materials, 36(5-6): 416−428. doi: 10.1002/fam.1097
    Roh J. S., Ryou H. S., Park W. H., et al., 2009. CFD simulation and assessment of life safety in a subway train fire. Tunnelling and Underground Space Technology, 24(4): 447−453. doi: 10.1016/j.tust.2008.12.003
    Tsukahara M., Koshiba Y., Ohtani H., 2011. Effectiveness of downward evacuation in a large-scale subway fire using fire dynamics simulator. Tunnelling and Underground Space Technology, 26(4): 573−581. doi: 10.1016/j.tust.2011.02.002
    Wang J., Main I. G., 2023. Strong historical earthquakes and their relationships with the Tan-Lu fault system and modern seismicity in eastern China. Natural Hazards, 115(1): 539−564. doi: 10.1007/s11069-022-05565-8
    Zalok E., Hadjisophocleous G. V., 2011. Assessment of the use of fire dynamics simulator in performance-based design. Fire Technology, 47(4): 1081−1100. doi: 10.1007/s10694-009-0117-5
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-14
  • 录用日期:  2024-12-31
  • 修回日期:  2024-12-17
  • 网络出版日期:  2025-07-17
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回