• ISSN 1673-5722
  • CN 11-5429/P

基于知识元与贝叶斯网络的地震次生地质灾害情景演化分析

刘平 倪晓霞

刘平,倪晓霞,2025. 基于知识元与贝叶斯网络的地震次生地质灾害情景演化分析. 震灾防御技术,20(2):254−267. doi:10.11899/zzfy20240161. doi: 10.11899/zzfy20240161
引用本文: 刘平,倪晓霞,2025. 基于知识元与贝叶斯网络的地震次生地质灾害情景演化分析. 震灾防御技术,20(2):254−267. doi:10.11899/zzfy20240161. doi: 10.11899/zzfy20240161
Liu Ping, Ni Xiaoxia. Evolutionary Analysis of Earthquake Secondary Geological Disasters Scenario Based on Knowledge Element and Bayesian Network[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 254-267. doi: 10.11899/zzfy20240161
Citation: Liu Ping, Ni Xiaoxia. Evolutionary Analysis of Earthquake Secondary Geological Disasters Scenario Based on Knowledge Element and Bayesian Network[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 254-267. doi: 10.11899/zzfy20240161

基于知识元与贝叶斯网络的地震次生地质灾害情景演化分析

doi: 10.11899/zzfy20240161
基金项目: 国家自然科学基金项目(72461019)
详细信息
    作者简介:

    刘平,男,生于1984年。副教授。主要从事安全风险管理方面的研究。E-mail:liupvip@foxmail.com

    通讯作者:

    倪晓霞,女,生于1995年。硕士研究生。主要从事安全风险管理方面的研究。E-mail:nixiaox07@163.com

Evolutionary Analysis of Earthquake Secondary Geological Disasters Scenario Based on Knowledge Element and Bayesian Network

  • 摘要: 根据以往地震发生后现场实际破坏数据可知,地震次生地质灾害已造成严重的灾区人员伤亡和经济损失,为此,需对地震次生地质灾害情景进行演化分析。为了解地震次生地质灾害的演化过程,首先基于突发事件知识元模型,对地震次生地质灾害情景组成要素进行分析。其次基于贝叶斯模型,明确构成地震次生地质灾害演化贝叶斯网络的节点变量及其取值范围,根据这些节点变量之间的因果关系和专家打分,建立贝叶斯网络图和节点变量条件概率模型。并利用证据理论将概率融合修正,计算次生地质灾害下关键节点状态概率,实现事故关键情景的推演。最后结合知识元模型和构建的地震次生地质灾害贝叶斯网络模型,对临夏积石山6.2级地震发生后导致的次生地质灾害情景进行分析。
  • 图  1  地震次生地质灾害情景要素结构

    Figure  1.  Structure of scenario elements for secondary geological disasters of earthquake

    图  2  地震次生地质灾害情景演化

    Figure  2.  Scenario evolution of secondary geological disasters of earthquakes

    图  3  贝叶斯网络图

    Figure  3.  Bayesian network diagram

    图  4  地震次生地质灾害贝叶斯网络

    Figure  4.  Bayesian networks for secondary geological disaster of earthquake

    图  5  积石山地震次生地质灾害情景贝叶斯网络

    Figure  5.  Bayesian network for secondary geological disaster scenarios of the Jishishan earthquake

    图  6  条件概率打分数据分布情况

    Figure  6.  Distribution of conditional probability score data

    图  7  主要变量发生概率

    Figure  7.  Probability of occurrence of major variables

    表  1  知识元模型各变量含义

    Table  1.   Definit ion of variables in the knowledge element model

    变量含义
    $ {K}_{m} $共性知识
    $ {N}_{m} $概念或属性名
    $ {A}_{m} $状态集
    $ {R}_{m} $属性状态变化关系集
    $ {p}_{a} $ 可测特征描述
    $ {d}_{a} $测度量纲集
    $ {f}_{a} $关系规则
    $ {p}_{r} $属性特征描述或辨识方法特征
    $ {A}_{r}^{I} $输入属性状态集
    $ {A}_{r}^{O} $输出属性状态集
    $ {f}_{r} $输入属性到输出属性之间的具体映射函数$ {A}_{r}^{I}={f}_{r}\left({A}_{r}^{O}\right) $
    下载: 导出CSV

    表  2  地震次生地质灾害事故演化过程

    Table  2.   Evolutionary process of secondary geological disaster accident of earthquake

    名称事故情景简述
    四川汶川地震2008年5月12日地震发生,诱发大量泥石流、滑坡、崩塌、堰塞湖等地质灾害;交通、通信、电力、供水等生命线系统以及相关企业、水利工程等遭到破坏;事故造成人员伤亡、经济损失;应急救援人员展开抗灾救援工作;最后,对灾区进行灾后重建。
    青海玉树地震2010年4月14日地震发生,诱发滑坡、崩塌、山体震裂;水渠溃决、砂土液化等导致山体局部地质灾害加剧,房屋倒塌;交通、通信、电力等生命线工程损坏;事故造成人员伤亡、经济损失;应急救援人员展开抗灾救援工作;最后,对灾区进行灾后重建。
    ············
    四川九寨沟2017年8月8日地震发生,地震区域位于高山峡谷,10年内发生了2次强震,加剧了山体内部结构的破坏,诱发滚石、崩塌等地质隐患,房屋破坏;交通、通信、电力等生命线工程损坏;事故造成人员伤亡、经济损失;应急救援人员展开抗灾救援工作;最后,对灾区进行灾后重建。
    下载: 导出CSV

    表  3  地震次生地质属性及环境属性变量离散化方法

    Table  3.   Discretization method for secondary geological and environmental attribute variables of earthquake

    序号变量组数取值范围
    1地震烈度4VIII/IX/X/XI
    2地震发生时间2易伤亡时间/相对安全时间
    3天气3南方雨季:4~10月;北方雨季:6~9月/高温/降雪、冬季(寒冷地区)
    4地下水位2地下水位高度影响地质灾害{是,否}
    5地下活动2地下活动影响地质灾害{是,否}
    6范围影响2遭受范围影响{是,否}
    下载: 导出CSV

    表  4  贝叶斯网络中部分节点状态变量离散化分布

    Table  4.   Discretized distribution of state variables of some nodes in Bayesian network

    序号变量状态值
    1灌溉区是否属于灌溉区{是,否}
    2地震次生地质灾害导致人员伤亡是否伤亡{是,否}
    3地震次生地质灾害导致建筑物倒塌是否倒塌{是,否}
    4地震次生地质灾害导致通讯中断是否中断{是,否}
    5地震次生地质灾害导致交通中断是否中断{是,否}
    6地震次生地质灾害导致供水、电、气等基础设施破坏是否破坏{是,否}
    7崩塌是否发生{是,否}
    8滑坡是否发生{是,否}
    9泥石流是否发生{是,否}
    10滚石是否发生{是,否}
    11地裂缝是否发生{是,否}
    12地震次生地质灾害导致救援阻断是否受到阻断{是,否}
    13建筑物倒塌导致人员伤亡人员伤亡{是,否}
    14建筑物倒塌导致救援阻断是否受到阻断{是,否}
    15疾病传染是否有疾病传染{是,否}
    16环境污染环境污染是否处于正常情况{是,否}
    17生活物资缺乏物资缺乏{是,否}
    18社会恐慌是否发生{是,否}
    下载: 导出CSV

    表  5  基本事件概率分布

    Table  5.   Probability distribution of fundamental event

    事件名称 概率分布(先验概率)
    地震烈度 {0.34,0.5,0.08,0.08}
    震发时间 {0.33,0.67}
    天气 {0.33,0.67}
    地下水位 {0.5,0.5}
    灌溉区 {0.5,0.5}
    地震次生地质灾害导致建筑物倒塌 {1,0}
    地震次生地质灾害导致交通中断 {0.9,0.1}
    地震次生地质灾害导致供水、电、气等基础设施破坏 {0.7,0.3}
    地质灾害 {0.9,0.1}
    次生灾害导致救援中断 {0.4,0.6}
    下载: 导出CSV

    表  6  积石山地震灾害事件情景要素表示

    Table  6.   Representation of the elements of scenario for the earthquake disaster event in the Jishishan

    情景阶段 情景要素
    初始情景 孕灾环境:饱和黄土稳定强度E1,冬灌E2,范围
    影响E3
    致灾因子:地震烈度H1
    发展情景 致灾因子:滑坡-泥流灾害H2,地下水位上升H3
    道路交通恢复H4,灾害消退H5
    承灾体:建筑物倒塌情况C1,供水、供电、通讯
    中断情况C2,道路中断情况C3,人员伤亡情况C4
    应急救援:交通管制、疏导M1,临时安置M2,及
    时救援M3
    结束情景 承灾体:灾后区域恢复C5
    应急救援:应急救援物资发放M4,人员安置M5
    建筑房屋灾后重建M6,疾病防疫M7
    下载: 导出CSV

    表  7  滑坡-泥流节点变量条件概率打分及证据合成结果

    Table  7.   Conditional probability score for the landslide-debris flow node variable and synthesis results of evidence

    代号 条件概率 m1 m2 m3 m
    P21 pH21|E1 0.45 0.3 0.55 0.400333
    P22 pH22|E1 0.5 0.6 0.3 0.449333
    P23 pH23|E1 0.25 0.1 0.4 0.156250
    下载: 导出CSV

    表  8  节点变量状态概率分布

    Table  8.   Probability distribution of node variable state

    情景阶段 变量名称 取值范围 状态概率
    初始情景 饱和黄土稳定强度 不稳定/稳定 (1,0)证据信息
    冬灌导致地下水位上升 发生/未发生 (1,0)证据信息
    范围影响 是/否 (1,0)证据信息
    地震烈度 VIII/IX/X/XI (1,0,0,0)证据信息
    发展情景 滑坡-泥流灾害 严重/不严重/无 0.4034,0.3977,0.1989
    建筑物倒塌 严重/不严重/无 0.4517,0.4061,0.1422
    道路中断 是/否 0.9115,0.0885
    供水、电等基础设施破坏 是/否 0.8794,0.1206
    交通管制、疏导 是/否 0.9514,0.0486
    道路交通恢复 是/否 0.7840,0.2160
    临时安置 是/否 0.9393,0.0607
    及时救援 是/否 0.8048,0.1952
    灾害消退 是/否 0.6719,0.3081
    人员伤亡 严重/不严重/无 0.3434,0.3552,0.3014
    结束情景 人员安置 是/否 0.7183,0.2817
    应急救援物资 充足/不足 0.5251,0.4749
    建筑房屋灾后重建 是/否 0.9623,0.0377
    疾病防疫 是/否 0.9260,0.0740
    灾后区域恢复 是/否 0.8794,0.1206
    下载: 导出CSV
  • 陈波,王芳,肖本夫,2021. “情景-应对”型理论体系的发展及其在地震灾害应急管理中的应用探讨. 震灾防御技术,16(4):605−616. doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104001

    Chen B., Wang F., Xiao B. F., 2021. The development of “Scenario-response” theoretical system and its application in earthquake disaster emergency management. Technology for Earthquake Disaster Prevention, 16(4): 605−616. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104001
    陈博,李振洪,黄武彪等,2022. 2022年四川泸定Mw6.6级地震诱发地质灾害空间分布及影响因素. 地球科学与环境学报,44(6):971−985.

    Chen B., Li Z. H., Huang W. B., et al., 2022. Spatial distribution and influencing factors of Geohazards induced by the 2022 Mw6.6 Luding (Sichuan, China) earthquake. Journal of Earth Sciences and Environment, 44(6): 971−985. (in Chinese)
    杜镇瀚,钟启明,董海洲等,2023. 基于贝叶斯网络的堰塞坝稳定性快速评价模型. 水利水电科技进展,43(4):37−45. doi: 10.3880/j.issn.1006-7647.2023.04.006

    Du Z. H., Zhong Q. M., Dong H. Z., et al., 2023. Rapid evaluation method of landslide dam stability based on Bayesian network. Advances in Science and Technology of Water Resources, 43(4): 37−45. (in Chinese) doi: 10.3880/j.issn.1006-7647.2023.04.006
    范维澄,刘奕,2009. 城市公共安全体系架构分析. 城市管理与科技,11(5):38−41. doi: 10.3969/j.issn.1008-2271.2009.05.015

    Fan W. C., Liu Y., 2009. Analysis of urban public safety system structure. Urban Management Science & Technology, 11(5): 38−41. (in Chinese) doi: 10.3969/j.issn.1008-2271.2009.05.015
    方丹辉,于款,万端翼等,2021. 基于贝叶斯网络的地震次生灾害情景演化分析. 武汉理工大学学报(信息与管理工程版),43(6):493−499. doi: 10.3963/j.issn.2095-3852.2021.06.001

    Fang D. H., Yu K., Wan D. Y., et al., 2021. Scenario evolution analysis of earthquake secondary disasters based on Bayesian network. Journal of Wuhan University of Technology (Information & Management Engineering), 43(6): 493−499. (in Chinese) doi: 10.3963/j.issn.2095-3852.2021.06.001
    顾一波,霍宇芒,2016. 基于贝叶斯网络的地震次生燃气管道泄漏事件链构建. 中国安全生产科学技术,12(7):134−139.

    Gu Y. B., Huo Y. M., 2016. Construction of event chain for secondary gas pipeline leakage induced by earthquake based on Bayesian network. Journal of Safety Science and Technology, 12(7): 134−139. (in Chinese)
    郭富赟,张永军,窦晓东等,2024. 甘肃积石山MS6.2地震次生地质灾害分布规律与发育特征. 兰州大学学报(自然科学版),60(1):6−12.

    Guo F. Y. , Zhang Y. J. , Dou X. D. , et al. 2024. Distribution patterns and development characteristics of secondary geological hazards caused by the MS6.2 earthquake in Jishishan, Gansu. Journal of Lanzhou University (Natural Sciences), 60(1): 6−12. (in Chinese)
    李蕾,聂冠军,2020. 广西地区地震次生地质灾害类型及分布特征. 灾害学,35(3):118−124. doi: 10.3969/j.issn.1000-811X.2020.03.023

    Li L., Nie G. J., 2020. Types and distribution characteristics of secondary geological disasters in Guangxi. Journal of Catastrophology, 35(3): 118−124. (in Chinese) doi: 10.3969/j.issn.1000-811X.2020.03.023
    廖勇,徐闯,陈军等,2021. 四川长宁“6·17”地震诱发的次生地质灾害类型及其发育特征. 中国地质灾害与防治学报,32(1):77−83.

    Liao Y., Xu C., Chen J., et al., 2021. Types and their characteristics of geological hazards triggered by “6·17” earthquake in Changning, Sichuan Province. The Chinese Journal of Geological Hazard and Control, 32(1): 77−83. (in Chinese)
    刘凤民,张立海,刘海青等,2006. 中国地震次生地质灾害危险性评价. 地质力学学报,12(2):127−131. doi: 10.3969/j.issn.1006-6616.2006.02.003

    Liu F. M., Zhang L. H., Liu H. Q., et al., 2006. Danger assessment of earthquake-induced geological disasters in China. Journal of Geomechanics, 12(2): 127−131. (in Chinese) doi: 10.3969/j.issn.1006-6616.2006.02.003
    马祖军,谢自莉,2012. 基于贝叶斯网络的城市地震次生灾害演化机理分析. 灾害学,27(4):1−5,24. doi: 10.3969/j.issn.1000-811X.2012.04.001

    Ma Z. J., Xie Z. L., 2012. Evolution mechanism of earthquake-induced urban disasters based on Bayesian networks. Journal of Catastrophology, 27(4): 1−5,24. (in Chinese) doi: 10.3969/j.issn.1000-811X.2012.04.001
    齐庆杰,刘英杰,孙祚等,2024. 地震诱发煤矿次生灾害类型与评估方法. 中国安全科学学报,34(4):167−174.

    Qi Q. J., Liu Y. J., Sun Z., et al., 2024. Types and evaluation methods of secondary disasters in coal mines induced by earthquake. China Safety Science Journal, 34(4): 167−174. (in Chinese)
    裘江南,刘丽丽,董磊磊,2012. 基于贝叶斯网络的突发事件链建模方法与应用. 系统工程学报,27(6):739−750. doi: 10.3969/j.issn.1000-5781.2012.06.003

    Qiu J. N., Liu L. L., Dong L. L., 2012. Modeling method and application of emergent event chain based on Bayesian network. Journal of Systems Engineering, 27(6): 739−750. (in Chinese) doi: 10.3969/j.issn.1000-5781.2012.06.003
    宋英华,刘含笑,蒋新宇等,2018. 基于知识元与贝叶斯网络的食品安全事故情景推演研究. 情报学报,37(7):712−720. doi: 10.3772/j.issn.1000-0135.2018.07.007

    Song Y. H., Liu H. X., Jiang X. Y., et al., 2018. Research on scenario evolution of food safety incidents based on knowledge element and Bayesian network. Journal of the China Society for Scientific and Technical Information, 37(7): 712−720. (in Chinese) doi: 10.3772/j.issn.1000-0135.2018.07.007
    宋英华,吴昊,刘丹等,2020. 基于D-S证据理论的地震应急救援群决策. 中国安全科学学报,30(5):163−168.

    Song Y. H., Wu H., Liu D., et al., 2020. Group decision-making for earthquake emergency rescue plan based on D-S evidence theory. China Safety Science Journal, 30(5): 163−168. (in Chinese)
    王笃国,刘志成,高玮,2024. 基于AHP的地震地质灾害危险性综合评价方法研究. 震灾防御技术,19(2):306−313. doi: 10.11899/zzfy20240210

    Wang D. G., Liu Z. C., Gao W., 2024. Study on AHP-based comprehensive evaluation method of earthquake-induced geological hazard. Technology for Earthquake Disaster Prevention, 19(2): 306−313. (in Chinese) doi: 10.11899/zzfy20240210
    王丽丽,王兰民,卢育霞等,2024. 甘肃积石山MS6.2级地震的震害特征与启示. 世界地震工程,40(1):58−71.

    Wang L. L., Wang L. M., Lu Y. X., et al., 2024. Characteristics and implications of seismic damage in Jishishan Ms6.2 earthquake, Gansu Province. World Earthquake Engineering, 40(1): 58−71. (in Chinese)
    王谦,钟秀梅,高中南,等,2022. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报,44(2):352−359.

    Wang Q. , Zhong X. M. , Gao Z. N. , et al. 2022. Characteristics of geological hazards induced by the Menyuan M6.9 earthquake. China Earthquake Engineering Journal, 44(2): 352−359. (in Chinese)
    王延章,2011. 模型管理的知识及其表示方法. 系统工程学报,26(6):850−856.

    Wang Y. Z., 2011. Knowledge and representation of model management. Journal of Systems Engineering, 26(6): 850−856. (in Chinese)
    王喆,孔维磊,方丹辉等,2021. 基于贝叶斯网络的城镇洪涝应急情景推演研究. 中国安全科学学报,31(6):182−188.

    Wang Z., Kong W. L., Fang D. H., et al., 2021. Research on urban flood and waterlog emergency scenario deduction based on Bayesian network. China Safety Science Journal, 31(6): 182−188. (in Chinese)
    魏利军,王向阳,罗艾民等,2017. 基于贝叶斯网络的化工园区地震次生灾害情景分析. 中国安全生产科学技术,13(12):73−78.

    Wei L. J., Wang X. Y., Luo A. M., et al., 2017. Scenario analysis on secondary disasters of earthquake in chemical industry park based on Bayesian network. Journal of Safety Science and Technology, 13(12): 73−78. (in Chinese)
    武旭鹏,夏登友,李健行,2014. 非常规突发事件情景描述方法研究. 中国安全科学学报,24(4):159−165.

    Wu X. P., Xia D. Y., Li J. H., 2014. Study on method for describing unconventional emergency scenario. China Safety Science Journal, 24(4): 159−165. (in Chinese)
    夏登友,2015. 基于“情景−应对”的非常规突发灾害事故应急决策技术研究. 北京:北京理工大学.

    Xia D. Y., 2015. Research on emergency decision-making for unconventional disasters and accidents based on scenario-response. Beijing:Beijing Institute of Technology. (in Chinese)
    夏登友,胡人元,朱毅等,2020. 基于知识三元组的危化品储罐区火灾情景构建. 安全与环境学报,20(3):938−945.

    Xia D. Y., Hu R. Y., Zhu Y., et al., 2020. On the fire scenario construction of the dangerous chemical tank area based on the knowledge triad. Journal of Safety and Environment, 20(3): 938−945. (in Chinese)
    谢自莉,2011. 城市地震次生灾害连锁演化机理及协同应急管理机制研究. 成都:西南交通大学.

    Xie Z. L., 2011. Evolution mechanism and cooperated emergency management mechanism for urban post-earthquake disasters. Chengdu:Southwest Jiaotong University. (in Chinese)
    胥良,2014. 四川芦山地震灾区次生地质灾害主要特征及防灾对策. 中国地质灾害与防治学报,25(2):125−129.

    Xu L., 2014. Characteristics of secondary geological disasters of Lushan earthquake disaster area and prevention measures. The Chinese Journal of Geological Hazard and Control, 25(2): 125−129. (in Chinese)
    许强,彭大雷,范宣梅等,2025. 甘肃积石山6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理. 武汉大学学报(信息科学版),50(2):207−222.

    Xu Q., Peng D. L., Fan X. M., et al., 2025. Preliminary study on the characteristics and initiation mechanism of Zhongchuan Town Flowslide Triggered by Jishishan Ms 6.2 Earthquake in Gansu Province. Geomatics and Information Science of Wuhan University, 50(2): 207−222. (in Chinese)
    颜峻,左哲,2014. 建筑物地震次生火灾的贝叶斯网络推理模型研究. 自然灾害学报,23(3):205−212.

    Yan J., Zuo Z., 2014. Study on inference model of seismic secondary fire of buildings based on Bayesian networks. Journal of Natural Disasters, 23(3): 205−212. (in Chinese)
    于海峰,王延章,卢小丽等,2016. 基于知识元的突发事件风险熵预测模型研究. 系统工程学报,31(1):117−126.

    Yu H. F., Wang Y. Z., Lu X. L., et al., 2016. Emergency risk entropy forecasting model based on knowledge element. Journal of Systems Engineering, 31(1): 117−126. (in Chinese)
    张承伟,李建伟,陈雪龙,2012. 基于知识元的突发事件情景建模. 情报杂志,31(7):11−15,43.

    Zhang C. W., Li J. W., Chen X. L., 2012. Emergency scenario model based on knowledge element. Journal of Intelligence, 31(7): 11−15,43. (in Chinese)
    张磊,王延章,陈雪龙,2016. 基于知识元的非常规突发事件情景模糊推演方法. 系统工程学报,31(6):729−738.

    Zhang L., Wang Y. Z., Chen X. L., 2016. Fuzzy inference method for unconventional events scenarios based on knowledge unit. Journal of Systems Engineering, 31(6): 729−738. (in Chinese)
    赵振东,王桂萱,赵杰,2010. 地震次生灾害及其研究现状. 防灾减灾学报,26(2):9−14. doi: 10.3969/j.issn.1674-8565.2010.02.003

    Zhao Z. D., Wang G. X., Zhao J., 2010. Secondary disaster of earthquake and the present research situation. Seismological Research of Northeast China, 26(2): 9−14. (in Chinese) doi: 10.3969/j.issn.1674-8565.2010.02.003
    周扬,夏登友,高平,2018. 城市商业综合体建筑火灾事故演变路径分析. 中国安全科学学报,28(2):170−174.

    Zhou Y., Xia D. Y., Gao P., 2018. Analysis of evolution path of urban commercial complex fire accident. China Safety Science Journal, 28(2): 170−174. (in Chinese)
    周中红,陈文凯,何少林等,2021. 甘肃省不同地区不同时段人员在室率研究. 震灾防御技术,16(3):501−509. doi: 10.11899/zzfy20210309

    Zhou Z. H., Chen W. K., He S. L., et al., 2021. Study on in-building probability of different periods and different regions in Gansu province. Technology for Earthquake Disaster Prevention, 16(3): 501−509. (in Chinese) doi: 10.11899/zzfy20210309
    Okamura M., Soga Y., 2006. Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5): 695−700. doi: 10.3208/sandf.46.695
    Yang J. B., Xu D. L., 2013. Evidential reasoning rule for evidence combination. Artificial Intelligence, 205: 1−29. doi: 10.1016/j.artint.2013.09.003
    Zhang C., Wu J. S., Huang C., et al., 2018. A model for the representation of emergency cases. Natural Hazards, 91(1): 337−351. doi: 10.1007/s11069-017-3131-9
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 录用日期:  2024-09-09
  • 修回日期:  2024-08-26
  • 网络出版日期:  2025-07-17
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回