• ISSN 1673-5722
  • CN 11-5429/P

输电塔体内拉索-杠杆惯容阻尼系统风振控制及参数优化

曹枚根 张若愚

曹枚根,张若愚,2024. 输电塔体内拉索-杠杆惯容阻尼系统风振控制及参数优化. 震灾防御技术,19(1):180−190. doi:10.11899/zzfy20240118. doi: 10.11899/zzfy20240118
引用本文: 曹枚根,张若愚,2024. 输电塔体内拉索-杠杆惯容阻尼系统风振控制及参数优化. 震灾防御技术,19(1):180−190. doi:10.11899/zzfy20240118. doi: 10.11899/zzfy20240118
Cao Meigen, Zhang Ruoyu. Wind-induced Vibration Control and Parameter Optimization of the Cable-lever Rotation Inerter System in the Transmission Tower[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 180-190. doi: 10.11899/zzfy20240118
Citation: Cao Meigen, Zhang Ruoyu. Wind-induced Vibration Control and Parameter Optimization of the Cable-lever Rotation Inerter System in the Transmission Tower[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 180-190. doi: 10.11899/zzfy20240118

输电塔体内拉索-杠杆惯容阻尼系统风振控制及参数优化

doi: 10.11899/zzfy20240118
基金项目: 国家电网有限公司总部指南科技项目(5200-201919121A-0-0-00);浙江省电力实业总公司科技项目(CF058807002021006)
详细信息
    作者简介:

    曹枚根,男,生于1975年。博士,研究员。主要从事输变电工程防灾减灾技术研究与应用工作。E-mail:314613692@qq.com

Wind-induced Vibration Control and Parameter Optimization of the Cable-lever Rotation Inerter System in the Transmission Tower

  • 摘要: 输电塔作为受风控制的高耸空间钢结构,风振控制技术是解决铁塔风灾受损、倒塔的重要技术手段之一。针对现有输电塔风振控制技术适应性不足的问题,提出了可在自立式输电塔体内布置的拉索-杠杆式旋转惯容阻尼器(CLRID)和优化设计方法。首先推导了CLRID典型平面刚架运动方程,然后开展了基于脉动风荷载特性的CLRID减振性能参数分析,最后考虑塔架性能需求对CLRID进行参数优化,得到固定布置夹角下的CLRID最优设计参数。研究结果表明,除惯容对阻尼单元变形的放大效应外,杠杆可实现对阻尼单元的二次放大作用,继续增大阻尼器行程,可弥补传统体内拉索体系斜向布置的缺陷,使具有不同拉索布置角度的CLRID对塔架具有相同的位移响应控制效果。同时,通过参数优化分析,CLRID拉索布置角度可控制在30°~50°,杠杆放大系数可控制在1~2。当确定目标减振比后,基于输电塔塔架性能的优化设计方法可使CLRID实现精准的风振控制。
  • 图  1  惯容单元力学模型

    Figure  1.  Mechanical model of an inerter element

    图  2  旋转惯容阻尼器(RID)及力学模型

    Figure  2.  Conceptual and mechanical model of a RID

    图  3  拉索旋转惯容阻尼器(CRID)及力学模型

    Figure  3.  Conceptual and mechanical model of a CRID

    图  4  输电塔CLRID系统布置及简化模型

    Figure  4.  Layout conceptual model and mechanical model of tower section with CLRID

    图  5  不同刚度比下位移减振比J等值线图

    Figure  5.  Contour plots of J with different stiffness ratio

    图  6  不同惯质比下位移减振比J等值线图

    Figure  6.  Contour plots of J with different inerter-mass ratio

    图  7  不同阻尼比下位移减振比J等值线图

    Figure  7.  Contour plots of J with different damping ratio

    图  8  布置CLRID的塔架位移传递函数曲线

    Figure  8.  Frequency‐domain transfer function curves of tower section with CLRID

    图  9  脉动风功率谱曲线

    Figure  9.  Power spectrum curve of fluctuating wind

    图  10  塔架位移及相位

    Figure  10.  Displacement responses and phase portraits of tower section

    图  11  塔架位移归一化功率谱密度及阻尼器滞回曲线

    Figure  11.  PSD of displacement responses of tower section and hysteresis loops of CLRID and VD

    表  1  不同布置夹角下CLRID最优设计参数

    Table  1.   Optimal designed parameters of CLRID with different angle

    θμζκα
    0°(TVMD)0.036 30.014 10.062 01.000 0
    30°0.056 50.014 90.115 91.286 5
    45°0.090 40.016 80.205 11.877 5
    60°0.125 60.018 50.369 03.121 4
    下载: 导出CSV

    表  2  不同目标减振比下CLRID最优设计参数

    Table  2.   Optimal designed parameters of CLRID with different Jt

    Jtμζκα
    0.70.056 10.007 70.161 31.727 5
    0.60.091 80.017 10.223 41.759 9
    0.50.144 00.032 90.380 11.835 4
    下载: 导出CSV
  • 曹枚根, 张若愚, 朱云祥等, 2022. 输电线路铁塔面内预应力拉索抗风加固及设计参数影响研究. 工业建筑, 52(8): 48—56

    Cao M. G. , Zhang R. Y. , Zhu Y. X. , et al. , 2022. Time history analysis on wind-induced response of UHV guyed single-mast transmission tower-line system. Industrial Construction, 52(8): 48—56. (in Chinese)
    郭正兴, 罗斌, 2011. 大跨空间钢结构预应力施工技术研究与应用——大跨空间钢结构预应力技术发展与应用综述. 施工技术, 40(9): 101—108

    Guo Z. X. , Luo B. , 2011. Research and application of long-span space steel structure prestress construction technology—review on development and application of long-span space steel structure prestress technology. Construction Technology, 40(9): 101—108. (in Chinese)
    贺业飞, 楼文娟, 孙炳楠等, 2005. 悬挂质量摆对大跨越输电塔的风振控制. 浙江大学学报(工学版), 39(12): 1891—1896

    He Y. F. , Lou W. J. , Sun B. N. , et al. , 2005. Wind-induced vibration control of long span transmission tower with suspended mass pendulums. Journal of Zhejiang University (Engineering Science), 39(12): 1891—1896. (in Chinese)
    雷旭, 付兴, 肖凯等, 2018. 强风作用下输电塔结构不确定性倒塌分析. 中国电机工程学报, 38(S1): 266—274

    Lei X. , Fu X. , Xiao K. , et al. , 2018. Failure analysis of a transmission tower subjected to wind load using uncertainty method. Proceedings of the CSEE, 38(S1): 266—274. (in Chinese)
    厉天威, 江巳彦, 赵建华等, 2016. 南方电网沿海地区输电线路风灾事故分析. 高压电器, 52(6): 23—28

    Li T. W. , Jiang S. Y. , Zhao J. H. , et al. , 2016. Wind accident analysis of southern grid coastal region transmission line. High Voltage Apparatus, 52(6): 23—28. (in Chinese)
    李小芳, 2016. 台风荷载作用下110 kV输电塔薄弱部位加固研究. 长沙: 长沙理工大学.

    Li X. F. , 2016. Analysis of the reinforcement measures on weak parts of 110 kV transmission towers under the Typhoo. Changsha: Changsha University of Science & Technology. (in Chinese)
    楼文娟, 姜雄, 夏亮等, 2013. 长横担输电塔风致薄弱部位及加强措施. 浙江大学学报(工学版), 47(10): 1798—1804

    Lou W. J. , Jiang X. , Xia L. , et al. , 2013. Wind-induced weak parts and reinforcement methods of long cross-armed transmission tower. Journal of Zhejiang University (Engineering Science), 47(10): 1798—1804. (in Chinese)
    孙吉波, 辛拓, 王延纬, 2014. 广东电网抗击超强台风“威马逊”的经验及反思. 广东电力, 27(12): 80—83

    Sun J. B. , Xin T. , Wang Y. W. , 2014. Experience of Guangdong power grid resisting super typhoon “Rammasun” and introspection. Guangdong Electric Power, 27(12): 80—83. (in Chinese)
    吴明祥, 包建强, 叶尹等, 2007. 超强台风“桑美”引起温州电网输电线路事故的分析. 电力建设, 28(9): 39—41

    Wu M. X. , Bao J. Q. , Ye Y. , et al. , 2007. Transmission line accident analysis of Wenzhou grid caused by super typhoon "SAOMAI". Electric Power Construction, 28(9): 39—41. (in Chinese)
    肖琦, 王永杰, 肖茂祥等, 2011. 横隔面在高压输电塔抗风设计中的作用分析. 东北电力大学学报, 31(S1): 32—36

    Xiao Q. , Wang Y. J. , Xiao M. X. , et al. , 2011. Effects of diaphragm on wind resistant design of power transmission towers. Journal of Northeast Dianli University, 31(S1): 32—36. (in Chinese)
    谢强, 李杰, 2006. 电力系统自然灾害的现状与对策. 自然灾害学报, 15(4): 126—131

    Xie Q. , Li J. , 2006. Current situation of natural disaster in electric power system and counter measures. Journal of Natural Disasters, 15(4): 126—131. (in Chinese)
    谢强, 丁兆东, 赵桂峰等, 2009. 不同横隔面配置方式的输电塔抗风动力响应分析. 高电压技术, 35(3): 683—688

    Xie Q. , Ding Z. D. , Zhao G. F. , et al. , 2009. Wind resistant analysis of power transmission tower with different diaphragm arrangements. High Voltage Engineering, 35(3): 683—688. (in Chinese)
    谢强, 李继国, 严承涌等, 2013.1000 kV特高压输电塔线体系风荷载传递机制风洞试验研究. 中国电机工程学报, 33(1): 109—116

    Xie Q. , Li J. G. , Yan C. Y. , et al. , 2013. Wind tunnel test on wind load transferring mechanism in the 1000 kV UHV transmission tower-line system. Proceedings of the CSEE, 33(1): 109—116. (in Chinese)
    杨文刚, 王璋奇, 朱伯文等, 2015. 特高压单柱拉线塔塔线体系风振响应时程分析. 中国电机工程学报, 35(12): 3182—3191

    Yang W. G. , Wang Z. Q. , Zhu B. W. , et al. , 2015. Time history analysis on wind-induced response of UHV guyed single-mast transmission tower-line system. Proceedings of the CSEE, 35(12): 3182—3191. (in Chinese)
    张爱林, 陆瑶, 2010. 提高输电塔架承载力的预应力技术研究. 钢结构, 25(1): 10—14

    Zhang A. L. , Lu Y. , 2010. Study on pre-stressed technology for reinforcing bearing capacity of transmission towers. Steel Construction, 25(1): 10—14. (in Chinese)
    张锋, 吴秋晗, 李继红, 2005. 台风“云娜”对浙江电网造成的危害与防范措施. 中国电力, 38(5): 39—42

    Zhang F. , Wu Q. H. , Li J. H. , 2005. Hazards of typhoon Rananim to Zhejiang power grid and its preventive measures. Electric Power, 38(5): 39—42. (in Chinese)
    张若愚, 曹枚根, 毛宇等, 2020. 增设拉线对特高压直流复合避雷器地震响应的影响分析. 南方电网技术, 14(4): 31—38

    Zhang R. Y. , Cao M. G. , Mao Y. , et al. , 2020. Influence analysis of additional guy cable on the seismic response of UHVDC composite arrester. Southern Power System Technology, 14(4): 31—38. (in Chinese)
    张戬, 杨正, 谢强, 2019. 输电塔T形组合角钢加固方法试验研究. 工业建筑, 49(4): 37—43

    Zhang J. , Yang Z. , Xie Q. , 2019. Experimental research on reinforcement method of transmission tower with T-Shaped combine angles. Industrial Construction, 49(4): 37—43. (in Chinese)
    钟万里, 吴灌伦, 王伟等, 2013. 一种高压输电塔在风场中的失稳与加固. 中南大学学报(自然科学版), 44(2): 593—597

    Zhong W. L. , Wu G. L. , Wang W. , et al. , 2013. Instability and reinforcement of a type of transmission tower in wind field. Journal of Central South University (Natural Science Technology), 44(2): 593—597. (in Chinese)
    朱云祥, 张若愚, 曹枚根等, 2022. 海岛大跨越输电塔线体系风振响应及风振系数. 高压电器, 58(1): 48—58

    Zhu Y. X. , Zhang R. Y. , Cao M. G. , et al. , 2022. Wind induced vibration response and coefficient of large crossing transmission tower line system between islands. High Voltage Apparatus, 58(1): 48—58. (in Chinese)
    Balendra T. , Wang C. M. , Cheong H. F. , 1995. Effectiveness of tuned liquid column dampers for vibration control of towers. Engineering Structures, 17(9): 668—675. doi: 10.1016/0141-0296(95)00036-7
    Battista R. C. , Rodrigues R. S. , Pfeil M. S. , 2003. Dynamic behavior and stability of transmission line towers under wind forces. Journal of Wind Engineering and Industrial Aerodynamics, 91(8): 1051—1067. doi: 10.1016/S0167-6105(03)00052-7
    Lu C. H., Ma X., Mills J. E., 2015 a. Structural performance of bolted connectors in retrofitted transmission tower leg members. In: Lynch O. J., ed., Electrical Transmission and Substation Structures 2015: Technical Challenges and Innovative Solutions in Grid Modernization. Branson: American Society of Civil Engineers, 489—499.
    Lu C. H. , Ma X. , Mills J. E. , 2015 b. Modeling of retrofitted steel transmission towers. Journal of Constructional Steel Research, 112: 138—154. doi: 10.1016/j.jcsr.2015.04.005
    Luo H. , Zhang R. F. , Weng D. G. , 2016. Mitigation of liquid sloshing in storage tanks by using a hybrid control method. Soil Dynamics and Earthquake Engineering, 90: 183—95. doi: 10.1016/j.soildyn.2016.08.037
    Zhang R. F. , Zhao Z. P. , Dai K. S. , 2019. Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system. Engineering Structures, 180: 29—39. doi: 10.1016/j.engstruct.2018.11.020
    Zhao Z. P. , Zhang R. F. , Wierschem N. E. , et al. , 2020. Displacement mitigation-oriented design and mechanism for inerter-based isolation system. Journal of Vibration and Control, 27(17—18): 1991—2003.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  9
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-17
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回