• ISSN 1673-5722
  • CN 11-5429/P

考虑构件地震相关性的近海桥梁二维地震易损性分析

任文静 邱大鹏 张智 柳春光

任文静,邱大鹏,张智,柳春光,2024. 考虑构件地震相关性的近海桥梁二维地震易损性分析. 震灾防御技术,19(1):96−107. doi:10.11899/zzfy20240110. doi: 10.11899/zzfy20240110
引用本文: 任文静,邱大鹏,张智,柳春光,2024. 考虑构件地震相关性的近海桥梁二维地震易损性分析. 震灾防御技术,19(1):96−107. doi:10.11899/zzfy20240110. doi: 10.11899/zzfy20240110
Ren Wenjing, Qiu Dapeng, Zhang Zhi, Liu Chunguang. The Two-dimensional Seismic Fragility Analysis of the Offshore Bridge in Considering the Seismic Correlation between Different Components[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 96-107. doi: 10.11899/zzfy20240110
Citation: Ren Wenjing, Qiu Dapeng, Zhang Zhi, Liu Chunguang. The Two-dimensional Seismic Fragility Analysis of the Offshore Bridge in Considering the Seismic Correlation between Different Components[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 96-107. doi: 10.11899/zzfy20240110

考虑构件地震相关性的近海桥梁二维地震易损性分析

doi: 10.11899/zzfy20240110
基金项目: 国家自然科学基金(52208397);山东省高等学校青创科技支持计划(2023KJ123);山东省自然科学基金(ZR2020QE280、ZR2021QE126)
详细信息
    作者简介:

    任文静,女,生于1992年。硕士,工程师。主要从事房屋建筑、结构抗震及易损性研究工作。E-mail:renwj0801@126.com

    通讯作者:

    邱大鹏,男,生于1992年。博士,副教授。主要从事大型结构抗震性能评价研究工作。E-mail:qiudapeng20@sdjzu.edu.cn

  • 12 https://peer.berkeley.edu/

The Two-dimensional Seismic Fragility Analysis of the Offshore Bridge in Considering the Seismic Correlation between Different Components

  • 摘要: 为了更加全面合理地评价我国近海桥梁结构的抗震性能,本研究开展了考虑氯离子侵蚀的简支梁桥二维地震易损性研究。以我国近海潮汐环境中某简支梁桥为例,基于IDA方法考虑了氯离子侵蚀对结构的不利影响,并模拟了桥梁的地震响应过程;选取合适的板式橡胶支座和桥墩损伤指标并得到了各自的地震易损性曲线,揭示了两构件之间地震的内在相关性,进一步基于相关性分析方法明确了两构件的相关系数,得到了桥梁结构合理的二维地震易损性曲线。结果表明,板式橡胶支座和桥墩之间的地震需求与抗震能力均存在密切的相关性,基于不同构件地震相关性的二维易损性曲线可以更加全面地评价桥梁结构的抗震性能。研究成果可以为近海桥梁抗震设计和地震风险评估提供科学依据与技术支持。
    1)  12 https://peer.berkeley.edu/
  • 图  1  桥梁结构简图

    Figure  1.  Simplified structure diagram of bridge

    图  2  地震动加速度反应谱

    Figure  2.  Acceleration response spectrum of ground motions

    图  3  桥墩截面划分

    Figure  3.  Division of pier section

    图  4  结构有限元模型

    Figure  4.  Finite element model of structure

    图  5  各构件地震需求的对数回归分析

    Figure  5.  Logarithmic regression analysis of seismic responses of each component

    图  6  板式橡胶支座与桥墩的地震易损性曲线

    Figure  6.  Fragility curves of laminated rubber bearing and pier

    图  7  桥梁结构地震易损性曲线界限

    Figure  7.  Upper and lower bounds of seismic fragility curves of the bridge system

    图  8  二维联合性能极限状态曲线示意图

    Figure  8.  Schematic diagram of limit state curves of two-dimensional combined performance

    图  9  桥梁结构二维地震易损性曲线

    Figure  9.  2-D seismic fragility curves of the bridge system

    表  1  材料参数统计结果

    Table  1.   Statistical results of material parameters

    随机变量单位分布类型均值标准差变异系数
    fyMPa正态分布388.2728.590.074
    fcMPa正态分布26.114.440.161
    EMPa正态分布20400020400.08
    WkN/m3正态分布26.252.600.10
    下载: 导出CSV

    表  2  算例桥梁材料本构参数

    Table  2.   Constitutive parameters of example bridge material

    样本编号约束混凝土桥墩纵筋
    峰值应力/MPa峰值应变极限应力/MPa极限应变屈服强度/MPa直径/mm
    128.560.00415.710.0112358.5324.66
    231.180.00396.240.0107362.6024.66
    333.800.00386.760.0102366.6724.66
    426.780.00445.360.0119370.7424.66
    529.410.00425.880.0113374.8124.66
    632.040.00406.410.0108378.8824.66
    734.660.00386.930.0103382.9524.66
    827.630.00445.530.0120387.0224.66
    930.270.00426.050.0114391.1024.66
    1032.890.00406.580.0109395.1724.66
    1135.520.00397.100.0104399.2424.66
    1228.490.00445.700.0121403.3124.66
    1331.120.00426.220.0115407.3824.66
    1433.750.00406.750.0110411.4524.66
    1536.370.00397.270.0106415.5224.66
    下载: 导出CSV

    表  3  桥墩损伤指标

    Table  3.   Damage indices of piers

    名称轻微损伤中等损伤严重损伤完全损伤
    位移延性比11.32242.13273
    下载: 导出CSV

    表  4  板式橡胶支座损伤指标

    Table  4.   Damage indices of laminated rubber bearings

    名称轻微损伤中等损伤严重损伤完全损伤
    位移/m0.050.0750.10.125
    下载: 导出CSV

    表  5  构件地震需求汇总结果

    Table  5.   Summary of component earthquake demand

    PGA/g板式橡胶支座桥墩
    对数均值对数标准差变异系数对数均值对数标准差变异系数
    0.05−4.9790.318−0.064−2.6420.171−0.065
    0.10−4.1890.234−0.056−1.9200.149−0.078
    0.15−3.7960.245−0.065−1.5610.221−0.142
    0.20−3.4170.323−0.095−1.2190.199−0.163
    0.25−3.2920.305−0.093−1.0490.272−0.259
    0.30−2.9750.369−0.124−1.0080.861−0.855
    0.35−2.9240.314−0.107−0.6180.213−0.344
    0.40−2.7400.370−0.135−0.4220.256−0.607
    0.45−2.5950.277−0.107−0.2980.284−0.954
    0.50−2.4380.459−0.188−0.1800.352−1.958
    0.55−2.2230.297−0.1340.0780.2943.770
    0.60−2.1150.361−0.1710.1770.3061.727
    0.65−2.0410.359−0.1760.1750.3181.815
    0.70−1.9780.305−0.1540.3580.2830.790
    0.75−1.8550.370−0.2000.5280.3180.602
    0.80−1.7070.439−0.2570.6420.3350.522
    0.85−1.7990.365−0.2030.6250.3360.538
    0.90−1.5970.441−0.2760.5060.9261.829
    0.95−1.5230.412−0.2710.6150.9321.515
    1.00−1.5290.364−0.2380.6380.7451.167
    下载: 导出CSV

    表  6  不同地震作用下构件相关系数

    Table  6.   Correlation coefficients under different earthquakes

    PGA/g相关系数λNPGA/g相关系数λN
    0.050.9020.8461.1820.550.8300.8211.217
    0.100.8810.8441.1850.600.8460.8191.221
    0.150.8620.8411.1890.650.8870.8161.225
    0.200.8560.8391.1920.700.8300.8141.228
    0.250.7800.8361.1960.750.7950.8121.232
    0.300.7260.8341.1990.800.7810.8091.236
    0.350.8130.8311.2030.850.7940.8071.240
    0.400.8330.8291.2060.900.8000.8041.244
    0.450.8010.8261.2100.950.8080.8021.248
    0.500.8060.8241.2141.000.8230.7991.251
    下载: 导出CSV
  • 谷音, 李晓芳, 2018. 考虑氯离子侵蚀的近海桥梁结构地震易损性分析. 应用基础与工程科学学报, 27(5): 1019—1032

    Gu Y. , Li X. F. , 2019. Seismic fragility analysis of offshore bridge structure considering chloride erosion. Journal of Basic Science and Engineering, 27(5): 1019—1032. (in Chinese)
    韩建平, 周帅帅, 2020. 考虑非结构构件损伤的钢筋混凝土框架建筑多维地震易损性分析. 地震工程与工程振动, 40(1): 39—48

    Han J. P. , Zhou S. S. , 2020. Multi-dimensional seismic fragility analysis of reinforced concrete framed building considering damage of non-structural components. Earthquake Engineering and Engineering Dynamics, 40(1): 39—48. (in Chinese)
    李超, 李宏男, 2014. 考虑氯离子腐蚀作用的近海桥梁结构全寿命抗震性能评价. 振动与冲击, 33(11): 70—77

    Li C. , Li H. N. , 2014. Life-cycle aseismic performance evaluation of offshore bridge structures considering chloride ions corrosion effect. Journal of Vibration and Shock, 33(11): 70—77. (in Chinese)
    李宏男, 成虎, 王东升, 2018. 桥梁结构地震易损性研究进展述评. 工程力学, 35(9): 1—16

    Li H. N. , Cheng H. , Wang D. S. , 2018. A review of advances in seismic fragility research on bridge structures. Engineering Mechanics, 35(9): 1—16. (in Chinese)
    柳春光, 任文静, 夏春旭, 2016. 考虑钢筋腐蚀的近海隔震桥梁地震易损性分析. 自然灾害学报, 25(6): 120—129

    Liu C. G. , Ren W. J. , Xia C. X. , 2016. Vulnerability analysis of offshore isolation bridges considering reinforcement corrosion. Journal of Natural Disasters, 25(6): 120—129. (in Chinese)
    刘健新, 葛胜锦, 2014. 日本公路桥梁抗震设计规范释义. 北京: 人民交通出版社.

    Liu J. X. , Ge S. J. , 2014. Interpretations of Japan code for seismic design of highway bridges. Beijing: China Communications Press. (in Chinese)
    刘骁骁, 吴子燕, 王其昂, 2017. 基于多维性能极限状态的概率地震需求分析. 振动与冲击, 36(1): 181—187, 206

    Liu X. X. , Wu Z. Y. , Wang Q. A. , 2017. Probabilistic seismic demand analysis based on multi-dimensional performance limit states. Journal of Vibration and Shock, 36(1): 181—187, 206. (in Chinese)
    任文静, 2017. 近海桥梁地震易损性及风险分析. 大连: 大连理工大学.

    Ren W. J. , 2017. Seismic vulnerability and risk analysis of the offshore bridge. Dalian: Dalian University of Technology.
    宋帅, 钱永久, 吴刚, 2017. 基于多元Copula函数的桥梁体系地震易损性分析方法研究. 振动与冲击, 36(9): 122—129, 208

    Song S. , Qian Y. J. , Wu G. , 2017. Seismic fragility analysis of a bridge system based on multivariate copula function. Journal of Vibration and Shock, 36(9): 122—129, 208. (in Chinese)
    王其昂, 吴子燕, 贾兆平, 2013. 桥梁系统地震多维易损性分析. 工程力学, 30(10): 192—198

    Wang Q. A. , Wu Z. Y. , Jia Z. P. , 2013. Multi-dimensional fragility analysis of bridge system under earthquake. Engineering Mechanics, 30(10): 192—198. (in Chinese)
    吴文朋, 李立峰, 2018. 桥梁结构系统地震易损性分析方法研究. 振动与冲击, 37(21): 273—280

    Wu W. P. , Li L. F. , 2018. System seismic fragility analysis methods for bridge structures. Journal of Vibration and Shock, 37(21): 273—280. (in Chinese)
    项梦洁, 王宪杰, 王思文等, 2021. 随机激励下多塔结构BRB布置优化及多维易损性评估. 土木工程学报, 54(3): 19—28

    Xiang M. J. , Wang X. J. , Wang S. W. , et al. , 2021. BRB layout optimization and multi-dimensional fragility evaluation of multi-tower structure under stochastic excitation. China Civil Engineering Journal, 54(3): 19—28.
    郑凯锋, 陈力波, 庄卫林等, 2013. 基于概率性地震需求模型的桥梁易损性分析. 工程力学, 30(5): 165—171, 187

    Zheng K. F. , Chen L. B. , Zhuang W. L. , et al. , 2013. Bridge vulnerability analysis based on probabilistic seismic demand models. Engineering Mechanics, 30(5): 165—171, 187. (in Chinese)
    Buckle I., Friedland I., Mander J., et al., 2006. Seismic retrofitting manual for highway structures. Part 1, bridges. Washington, D. C. : Multidisciplinary Center for Earthquake Engineering Research (U. S. ).
    Caltrans Y., 2013. Seismic design criteria, Version 1.7. Sacramento: Seismic Design Criteria.
    Choi E. , Desroches R. , Nielson B. , 2004. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 26(2): 187—199. doi: 10.1016/j.engstruct.2003.09.006
    Cimellaro G. P., Reinhorn A. M., Bruneau M., et al., 2006. Multidimensional fragility of structures: formulation and evaluation. New York: Multidisciplinary Center for Earthquake Engineering Research.
    Cornell C. A. , Jalayer F. , Hamburger R. O. , et al. , 2002. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering, 128(4): 526—533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
    Ghosh J. , Padgett J. E. , 2010. Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 136(12): 1497—1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260
    Hwang H., Liu J. B., Chiu Y. H., 2001. Seismic fragility analysis of highway bridges. Memphis: The University of Memphis.
    Nielson B. G. , Desroches R. , 2007. Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering & Structural Dynamics, 36(6): 823—839.
    Pan Y. , Agrawal A. K. , Ghosn M. , 2007. Seismic fragility of continuous steel highway bridges in New York State. Journal of Bridge Engineering, 12(6): 689—699. doi: 10.1061/(ASCE)1084-0702(2007)12:6(689)
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-28
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回