• ISSN 1673-5722
  • CN 11-5429/P

无砟轨道简支-刚构组合梁桥抗震特性及优化设计研究

刘尊稳 梁刚毅 李欣婧 牟金龙

刘尊稳,梁刚毅,李欣婧,牟金龙,2025. 无砟轨道简支-刚构组合梁桥抗震特性及优化设计研究. 震灾防御技术,20(1):174−184. doi:10.11899/zzfy20240017. doi: 10.11899/zzfy20240017
引用本文: 刘尊稳,梁刚毅,李欣婧,牟金龙,2025. 无砟轨道简支-刚构组合梁桥抗震特性及优化设计研究. 震灾防御技术,20(1):174−184. doi:10.11899/zzfy20240017. doi: 10.11899/zzfy20240017
Liu Zunwen, Liang Gangyi, Li Xinjing, Mou Jinlong. Seismic Characteristics and Optimal Design of Ballastless Track Simply-rigid-frame Composite Girder Bridge[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 174-184. doi: 10.11899/zzfy20240017
Citation: Liu Zunwen, Liang Gangyi, Li Xinjing, Mou Jinlong. Seismic Characteristics and Optimal Design of Ballastless Track Simply-rigid-frame Composite Girder Bridge[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 174-184. doi: 10.11899/zzfy20240017

无砟轨道简支-刚构组合梁桥抗震特性及优化设计研究

doi: 10.11899/zzfy20240017
基金项目: 甘肃省自然科学基金项目(21JR1RA240)
详细信息
    作者简介:

    刘尊稳,男,生于1985年。副教授,硕士生导师。主要从事桥梁抗震方面的研究。E-mail:liuzunwen@lzjtu.edu.cn

    通讯作者:

    梁刚毅,男,生于1995年。硕士研究生。主要从事桥梁抗震相关研究。E-mail:2112684920@qq.com

Seismic Characteristics and Optimal Design of Ballastless Track Simply-rigid-frame Composite Girder Bridge

  • 摘要: 为探究高速铁路简支-刚构组合梁桥抗震优化设计方法,以我国西部地区一座跨越沟谷的高速铁路简支-刚构组合梁桥为实际工程背景,建立考虑CRTS Ⅰ型双块式无砟轨道的简支-刚构组合梁桥线桥一体化计算模型。采用反应谱法、非线性时程法及IDA法对比分析了线桥一体化模型和传统模型的抗震特性并进行优化设计。结果表明:①轨道约束改变了桥梁体系的受力行为和高、低阶振型对桥梁动力特性的影响;②对刚构桥进行抗震研究时,可选择邻近10~11跨简支梁桥作为边界条件,以消解桥跨数对刚构桥抗震性能的影响;③针对6度区地震及7度区小震、中震,刚构桥抗震研究建议不考虑轨道约束效应,而在8度、9度区中震及7度、8度、9度区大震中,轨道约束对刚构桥地震响应影响较大,进行抗震计算时建议考虑轨道约束效应;④轨道约束放大了过渡桥墩的地震响应,在过渡桥墩墩顶设置减隔震支座不仅能有效降低结构体系地震响应,同时节约其他桥跨减隔震支座的购买及施工成本;⑤轨道层间的传力及耗能部件主要是凹槽垫片和隔离层,为防止这些构件在能量传递过程中发生严重损伤,可考虑在轨道层间设置减隔震装置或植入耗能钢筋。
  • 图  1  轨道及梁体细部尺寸图(单位:厘米)

    Figure  1.  Track and beam body detailed dimensions (Unit: cm)

    图  2  无砟轨道简支-刚构组合梁桥计算模型

    Figure  2.  Calculation model of ballastless track simply supported rigid frame composite beam bridge

    图  3  桥墩弹塑性截面纤维划分

    Figure  3.  Fiber division of elastic-plastic cross-section of bridge pie

    图  4  Menegotto-pinto钢筋滞回本构模型

    Figure  4.  Menegotto-pinto hysteretic constitutive model of steel reinforcement

    图  5  混凝土Mander模型

    Figure  5.  Concrete Mander mode

    图  6  桥梁体系振型图

    Figure  6.  Model diagram of bridge system

    图  7  墩底截面弯矩图

    Figure  7.  Ending moment of pier bottom section

    图  8  刚构桥地震响应与简支梁跨数的关系

    Figure  8.  Relationship between seismic response of rigid frame bridges and the number of spans of simply supported beams

    图  9  地震波图

    Figure  9.  Seismic wave

    图  10  3条地震波频谱特性

    Figure  10.  Spectral characteristics of three seismic waves

    图  11  桥墩IDA曲线

    Figure  11.  Pier IDA curve

    图  12  桥墩墩底滞回曲线

    Figure  12.  Hysteresis curves of bridge pier bottom

    图  13  减隔震支座及过渡桥墩滞回曲线

    Figure  13.  Hysteresis curves of seismic isolation support and transition pier

    图  14  凹槽及隔离层滞回曲线

    Figure  14.  Hysteresis curves of groove and isolation layer

    表  1  各部件刚度取值

    Table  1.   Stiffness values of each component

    隔离摩擦层刚度/(kN·m−1 凹槽垫片刚度/(kN·m−1 后继结构刚度/(kN·m−1
    9.5 1.8×105 7.72×104
    下载: 导出CSV

    表  2  HRB335钢筋参数表

    Table  2.   HRB335 reinforcement parameters

    弹性模量E0/GPa 抗拉强度$ \mathit{\text{σ}}_0 $/MPa 横截面积b/m2 直径$ {{R}}_{\text{0}} $/mm 材料常数cR1
    材料常数cR2
    200 455 0.01 20 0.925 0.15
    下载: 导出CSV

    表  3  混凝土参数表

    Table  3.   Concrete parameters

    桥墩类型 $ f'_{{\mathrm{co}}} $/MPa $ f'_{{\text{cc}}}$/MPa
    刚构桥墩 (C40) 35.5 41.4
    简支梁桥桥墩 (C35) 30 36.5
    下载: 导出CSV

    表  4  2种模型的前10阶振型

    Table  4.   The first ten longitudinal natural vibration periods of two models

    振型阶数考虑轨道约束不考虑轨道约束
    自振周期/s质量参与系数/%振型自振周期/s质量参与系数/%振型
    11.1070桥梁横向正对称振动1.36230.84桥梁横向正对称振动
    20.50772.98桥梁纵向反对称振动1.0950桥梁纵向反对称振动
    30.4860桥梁纵向正对称振动0.4820桥梁纵向正对称振动
    40.4410桥梁横向反对称振动0.4320桥梁横向反对称振动
    50.2800桥梁纵向正对称振动0.3070桥梁纵向正对称振动
    60.2740桥梁纵向正对称振动0.30749.07桥梁纵向正对称振动
    70.25411.76桥梁横向正对称振动0.3050桥梁横向正对称振动
    80.2410桥梁横向正对称振动0.3040桥梁横向正对称振动
    90.2240桥梁纵向正对称振动0.3010桥梁纵向正对称振动
    100.1870桥梁横向正对称振动0.3023.3桥梁横向正对称振动
    下载: 导出CSV

    表  5  水平设计地震基本加速度

    Table  5.   Basic earthquake acceleration of horizontal design

    设计地震基本加速度/g
    6度 7度 8度 9度
    0.05 0.10 0.15 0.20 0.30 0.40
    下载: 导出CSV
  • 国巍,王阳,葛苍瑜等,2020. 近断层地震动下高速铁路多跨简支梁桥震致破坏特征. 振动与冲击,39(17):210−218.

    Guo W., Wang Y., Ge C. Y., et al., 2020. Seismic failure features of multi-span simply supported girder bridges of high-speed railway under near-fault earthquake. Journal of Vibration and Shock, 39(17): 210−218. (in Chinese)
    焦习龙,王荣霞,马海龙等,2023. 断层走向对刚构桥地震反应的影响. 地震工程学报,45(1):50−57.

    Jiao X. L., Wang R. X., Ma H. L., et al., 2023. Influence of fault strike on the seismic response of rigid-frame bridges. China Earthquake Engineering Journal, 45(1): 50−57. (in Chinese)
    雷燕云,谢旭,2018. 修正的Giuffre-Menegotto-Pinto钢筋滞回本构模型. 浙江大学学报(工学版),52(10):1926−1934. doi: 10.3785/j.issn.1008-973X.2018.10.012

    Lei Y. Y., Xie X., 2018. Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model. Journal of Zhejiang University (Engineering Science), 52(10): 1926−1934. (in Chinese) doi: 10.3785/j.issn.1008-973X.2018.10.012
    梁岩,闫佳磊,班亚云等,2019. 多跨连续刚构桥梁地震易损性损伤指标计算方法. 铁道科学与工程学报,16(6):1466−1475.

    Liang Y., Yan J. L., Ban Y. Y., et al., 2019. Analysis of calculation method for seismic fragility index of multi span continuous rigid frame bridge. Journal of Railway Science and Engineering, 16(6): 1466−1475. (in Chinese)
    刘尊稳,2020. 基于线桥一体化模型的高速铁路桥梁抗震性能及设计方法研究. 岩石力学与工程学报,39(5):1080.

    Liu Z. W., 2020. Research on seismic performance and design method for high-speed railway bridges based on track-bridge integrated model. Chinese Journal of Rock Mechanics and Engineering, 39(5): 1080. (in Chinese)
    卢永飞,秦亮,2020. T形刚构桥桥墩参数对车-桥动力响应影响研究. 震灾防御技术,15(4):718−730.

    Lu Y. F., Qin L., 2020. Study on influence of pier parameters of t-shaped rigid frame bridge on vehicle bridge dynamic response. Technology for Earthquake Disaster Prevention, 15(4): 718−730. (in Chinese)
    彭有开,吴超垚,于佳傲等,2020. 箍筋约束再生混凝土受压应力-应变本构关系模型. 建筑结构学报,41(12):174−183.

    Peng Y. K., Wu C. Y., Yu J. A., et al., 2020. Stress-strain constitutive model for stirrup-confined recycled concrete under compression. Journal of Building Structures, 41(12): 174−183. (in Chinese)
    全伟,王东升,2018. 高烈度震区高速铁路中小跨桥梁结构选型研究. 桥梁建设,48(2):43−48. doi: 10.3969/j.issn.1003-4722.2018.02.008

    Quan W., Wang D. S., 2018. Study of structural type selection for short and medium span high-speed railway bridges in high-intensity seismic region. Bridge Construction, 48(2): 43−48. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.02.008
    王帅,宋帅,张巍,2021. 高承台下自由桩长对双薄壁墩连续刚构桥地震响应的影响. 世界地震工程,37(1):103−110.

    Wang S., Song S., Zhang W., 2021. Influence of free length of piles under high platform on seismic response of continuous rigid frame bridges with double thin-wall piers. World Earthquake Engineering, 37(1): 103−110. (in Chinese)
    魏俊杰,邬晓光,2023. 结构参数对高低墩刚构连续梁桥体系地震响应的影响. 地震工程学报,45(6):1333−1342.

    Wei J. J., Wu X. G., 2023. Influence of structural parameters on the seismic response of rigid-frame continuous girder bridges with high and low piers. China Earthquake Engineering Journal, 45(6): 1333−1342. (in Chinese)
    喻梅,吕佳伟,贾宏宇等,2021. 近断层脉冲型地震作用下高速铁路桥梁-轨道系统响应分析. 湖南大学学报(自然科学版),48(9):138−146.

    Yu M., Lü J. W., Jia H. Y., et al., 2021. Response analysis of high-speed railway bridge-rail system subjected to near-fault pulse-type earthquake. Journal of Hunan University (Natural Sciences), 48(9): 138−146. (in Chinese)
    张永亮,王云,陈兴冲等,2018. 双薄壁墩连续刚构桥地震反应影响参数分析. 桥梁建设,48(4):17−21. doi: 10.3969/j.issn.1003-4722.2018.04.004

    Zhang Y. L., Wang Y., Chen X. C., et al., 2018. Analysis of parameters having influence on seismic responses of continuous rigid-frame bridges with double thin-wall piers. Bridge Construction, 48(4): 17−21. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.04.004
    张玥,薛磊,陈帅等,2020. 地震作用下高烈度区连续刚构桥参数敏感性分析. 地震工程学报,42(2):311−317. doi: 10.3969/j.issn.1000-0844.2020.02.311

    Zhang Y., Xue L., Chen S., et al., 2020. Parameter sensitivity analysis of continuous rigid-frame bridges in high seismic intensity regions under seismic action. China Earthquake Engineering Journal, 42(2): 311−317. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.02.311
    赵金钢,贾宏宇,占玉林,2023. 近场旋转地震波对多跨高墩连续刚构桥地震易损性的影响. 振动与冲击,42(1):146−159.

    Zhao J. G., Jia H. Y., Zhan Y. L., 2023. Effects of near-field rotating seismic waves on seismic vulnerability of multi-span high-pier continuous rigid frame bridge. Journal of Vibration and Shock, 42(1): 146−159. (in Chinese)
    周旺保,彭东航,蒋丽忠等,2023. 横向地震作用下高速铁路CRTS Ⅲ型无砟轨道-桥梁系统震致轨道不平顺研究. 铁道科学与工程学报,20(8):2773−2784.

    Zhou W. B., Peng D. H., Jiang L. Z., et al., 2023. Study on track irregularity of CRTS Ⅲ ballastless track-bridge system of high-speed railway under transverse earthquake. Journal of Railway Science and Engineering, 20(8): 2773−2784. (in Chinese)
    Gao Q., Yang M. G., Meng D. L., 2023. Seismic optimization of high-speed railway bridges considering the running safety of trains in normal service. Structure and Infrastructure Engineering, 19(9): 1283−1298. doi: 10.1080/15732479.2021.2023587
    Guo W., Gao X., Hu P., et al., 2020. Seismic damage features of high-speed railway simply supported bridge–track system under near-fault earthquake. Advances in Structural Engineering, 23(8): 1573−1586. doi: 10.1177/1369433219896166
    Jiang L. Z., Zhang Y. T., Feng Y. L., et al., 2020. Simplified calculation modeling method of multi-span bridges on high-speed railways under earthquake condition. Bulletin of Earthquake Engineering, 18(5): 2303−2328. doi: 10.1007/s10518-019-00779-x
    Liu W. S., Lai H., Dai G. L., et al., 2021. Numerical study on track–bridge interaction of integral railway rigid-frame bridge. Applied Sciences, 11(3): 922. doi: 10.3390/app11030922
    Livingston E., Sasani M., Bazan M., et al., 2015. Progressive collapse resistance of RC beams. Engineering Structures, 95: 61−70. doi: 10.1016/j.engstruct.2015.03.044
    Zhou W. B., Peng D. H., Liu L. L., et al., 2023. Transverse seismic analysis of high-speed railway bridge in China based on a simplified calculation model. Journal of Central South University, 30(1): 351−364. doi: 10.1007/s11771-023-5226-7
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 录用日期:  2024-09-02
  • 修回日期:  2024-08-21
  • 网络出版日期:  2025-04-18
  • 刊出日期:  2025-03-30

目录

    /

    返回文章
    返回