Study on Seismic Response of Nuclear Containment Structure under Consideration of the Soil-structure Interaction
-
摘要: 随着核电适建厂址减少,核电厂址的选择将不可避免地遇到非基岩场地,因此需要研究土-结构相互作用(SSI)对核电结构地震响应的影响。本研究建立了包括核安全壳结构、附属厂房和土体的精细化三维整体有限元模型,采用施加自由场荷载和黏弹性人工边界的波动输入方法,研究了不同频谱特性的地震动作用下SSI效应和附属厂房对核电安全壳结构地震响应的影响。结果表明,相较于基岩场地,考虑SSI效应会增大结构的位移响应,对加速度响应的影响与输入地震动频谱特性相关,对楼面谱峰值附近的频段影响显著。SSI效应显著时,周围附属厂房的存在会增大结构的地震响应。当土体剪切波速大于1500 m/s时,SSI效应对结构地震响应的影响较小。Abstract: As the availability of suitable rock sites for nuclear power plants decreases, the selection of non-rock sites has become inevitable, necessitating the consideration of soil-structure interaction (SSI) in seismic analyses. This study develops a refined three-dimensional direct finite element model that incorporates the nuclear containment structure, ancillary structures, and surrounding soil. A wave input method, incorporating free-field loads and a viscous-spring artificial boundary, is employed to analyze seismic responses. The study examines the effects of SSI and structure-soil-structure interaction (SSSI) on the seismic response of nuclear containment structures. The findings indicate that non-rock sites amplify structural displacement responses. The impact of SSI on acceleration responses depends on the frequency content of the input ground motion, with notable effects near the peak of the floor response spectrum. Additionally, when SSI effects are significant, the presence of surrounding ancillary structures increases seismic responses. However, when the site's shear wave velocity exceeds 1500 m/s, the influence of SSI on structural seismic response becomes negligible.
-
Key words:
- Nuclear containment structure /
- Non-rock site /
- SSI effect /
- Auxiliary structure /
- Seismic analysis
-
表 1 地震动信息
Table 1. Earthquake information
编号 年份 地震动记录 台站 PGA/PGV 卓越频率/Hz L1 1995 Kobe_Japan Kobe University 0.499 0.83 L2 1999 Kocaeli-Turkey Yarimca 0.201 0.13 L3 1989 Loma_Prieta BRAN 0.613 2.25 I1 1987 Whittier Narrows-01 Pasadena-CIT Kresge Lab 1.083 1.44 I2 1985 Nahanni-Canada Site_1 1.065 1.48 I3 1979 Imperial_Valley-06 Chihuahua 1.088 1.36 H1 1970 Lytle_Creek Cedar Springs_Allen Ranch 3.237 7.39 H2 1992 Cape_Mendocino Cape_Mendocino 5.043 8.88 H3 1992 Cape_Mendocino Rio_Dell_Overpass-FF 2.620 4.58 表 2 土体信息
Table 2. Soil information
编号 VS/(m·s−1) Ρ/(kg·m−3) E/GPa v 1 900 2300 5.12 0.37 2 1500 2450 14.85 0.35 3 2000 2600 27.22 0.31 4 2400 2700 40.07 0.29 -
戴志军,李小军,侯春林,2013. 地基土参数对核电厂地震动响应的敏感性分析. 应用基础与工程科学学报,21(3):479−488. doi: 10.3969/j.issn.1005-0930.2013.03.010Dai Z. J., Li X. J., Hou C. L., 2013. An analysis of the sensitivity of parameters of ground soil for the ground motion response of nuclear power plant structures. Journal of Basic Science and Engineering, 21(3): 479−488. (in Chinese) doi: 10.3969/j.issn.1005-0930.2013.03.010 杜修力,赵密,王进廷,2006. 近场波动模拟的人工应力边界条件. 力学学报,38(1):49−56.Du X. L., Zhao M., Wang J. T., 2006. A stress artificial boundary in fea for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics, 38(1): 49−56. (in Chinese) 高永武,王涛,戴君武等,2017. 不同场地条件下某新型核电厂房的地震响应试验研究. 振动与冲击,36(18):214−222.Gao Y. W., Wang T., Dai J. W., et al., 2017. Experimental research on seismic responses of a new type of nuclear power plant under different site conditions. Journal of Vibration and Shock, 36(18): 214−222. (in Chinese) 孔宪京,林皋,2013. 核电厂工程结构抗震研究进展. 中国工程科学,15(4):62−74.Kong X. J., Lin G., 2013. Research advances on engineering structural seismic safety of nuclear power plant. Strategic Study of CAE, 15(4): 62−74. (in Chinese) 雷墉,李小军,宋辰宁等,2017. 核电结构PCS水箱液动压力分析等效模型. 地震工程学报,39(5):890−897,906.Lei Y., Li X. J., Song C. N., et al., 2017. Equivalent model for dynamic fluid pressure analysis of PCS tanks in nuclear power plants. China Earthquake Engineering Journal, 39(5): 890−897,906. (in Chinese) 李小军,王晓辉,贺秋梅等,2017a. 非基岩核电厂结构地震响应振动台试验研究. 核动力工程,38(4):31−35.Li X. J., Wang X. H., He Q. M., et al., 2017a. Shaking table test for evaluation of seismic behavior of nuclear power plants on non-rock site. Nuclear Power Engineering, 38(4): 31−35. (in Chinese) 李小军,王晓辉,王贵英,2017b. 非基岩场地核电厂CAP1400结构地震反应分析. 应用基础与工程科学学报,25(3):584−594.Li X. J., Wang X. H., Wang G. Y., 2017b. Seismic response analysis of CAP1400 structure of nuclear power plant at non-bedrock site. Journal of Basic Science and Engineering, 25(3): 584−594. (in Chinese) 李小军,王芳,陈苏,2021. 非基岩场地核设施工程地基处理及对结构地震响应的影响. 应用基础与工程科学学报,29(6):1474−1483.Li X. J., Wang F., Chen S., 2021. Foundation treatment of nuclear facility engineering on non-rock site and its impact on structural seismic response. Journal of Basic Science and Engineering, 29(6): 1474−1483. (in Chinese) 林皋,2011a. 核电工程结构抗震设计研究综述(Ⅰ). 人民长江,42(19):1−6.Lin G., 2011a. Review on seismic structural design of nuclear power project (Ⅰ). Yangtze River, 42(19): 1−6. (in Chinese) 林皋,2011b. 核电工程结构抗震设计研究综述(Ⅱ). 人民长江,42(21):1−6.Lin G., 2011b. Review on seismic design of nuclear power project (Ⅱ). Yangtze River, 42(21): 1−6. (in Chinese) 刘洁平,张令心,吴正泓,2014. 核电厂安全壳土‐结构相互作用地震反应简化分析方法. 土木工程学报,47(S1):227−233.Liu J. P., Zhang L. X., Wu Z. H., 2014. A seismic response simplified analysis method considering soil-structure interaction of inner containment in nuclear power plant. China Civil Engineering Journal, 47(S1): 227−233. (in Chinese) 刘晶波,王振宇,杜修力等,2005. 波动问题中的三维时域粘弹性人工边界. 工程力学,22(6):46−51. doi: 10.3969/j.issn.1000-4750.2005.06.008Liu J. B., Wang Z. Y., Du X. L., et al., 2005. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems. Engineering Mechanics, 22(6): 46−51. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.06.008 王继东,2014. 层状土场地条件下核电厂抗震数值分析模型及应用研究. 大连:大连理工大学.Wang J. D., 2014. The research and application of seismic numerical analysis model of nuclear power plant under layered soil site condition. Dalian:Dalian University of Technology. (in Chinese) 王晓辉,2017. 非基岩场地核电厂地震反应试验与数值模拟分析. 北京:北京工业大学.Wang X. H., 2017. Shaking table tests and numerical simulation analysis of nuclear power plants in non- rock site. Beijing:Beijing University of Technology. (in Chinese) 赵密,王鑫,钟紫蓝,等,2020. P波斜入射下非基岩场地中核岛结构地震响应规律研究. 工程力学,37(12):43−51,77. doi: 10.6052/j.issn.1000-4750.2019.12.0744Zhao M., Wang X., Zhong Z. L., et al., 2020. Study on seismic responses of nuclear island structure in non-bedrock site under obliquely-incidence of P waves. Engineering Mechanics, 37(12): 43−51,77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0744 Abell J. A., Orbović N., McCallen D. B., et al., 2018. Earthquake soil-structure interaction of nuclear power plants, differences in response to 3-D, 3×1-D, and 1-D excitations. Earthquake Engineering & Structural Dynamics, 47(6): 1478−1495. De Borbón F., Domizio M., Ambrosini D., et al., 2020. Influence of various parameters in the seismic soil-structure interaction response of a nuclear power plant. Engineering Structures, 217: 110820. doi: 10.1016/j.engstruct.2020.110820 Huang X., Kwon O. S., Kwon T. H., 2021. An integrated simulation method for soil-structure interaction analysis of nuclear structures. Earthquake Engineering & Structural Dynamics, 50(10): 2634−2652. Kianoush M. R., Ghaemmaghami A. R., 2011. The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil–structure interaction. Engineering Structures, 33(7): 2186−2200. doi: 10.1016/j.engstruct.2011.03.009 Saxena N., Paul D. K., 2012. Effects of embedment including slip and separation on seismic SSI response of a nuclear reactor building. Nuclear Engineering and Design, 247: 23−33. doi: 10.1016/j.nucengdes.2012.02.010 Tuñón-Sanjur L., Orr R. S., Tinic S., et al., 2007. Finite element modeling of the AP1000 nuclear island for seismic analyses at generic soil and rock sites. Nuclear Engineering and Design, 237(12-13): 1474−1485. doi: 10.1016/j.nucengdes.2006.10.006 Wolf J. P. , 1985. Dynamic soil-structure interaction. Englewood Cliffs: Prentice-Hall. Wolf J. P. , 1988. Soil-structure interaction analysis in a time domain. Englewood Cliffs: Prentice-Hall. Yang J. H., Ahn T. H., Bae H., et al., 2023. Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system. Nuclear Engineering and Technology, 55(3): 1125−1139. doi: 10.1016/j.net.2022.11.022 -