A Rapid Prediction Method for Substation Earthquake Damages
-
摘要: 变电站地震应急预案的制定与演练,以及震后电力应急处置工作的部署都需要对变电站地震损坏情况做出快速预测。本文在借鉴吸收国际变电站地震损坏评估方法及成果、统计分析国内变电站地震损坏案例基础上,采用专家调查法构建了3种电压等级(35 kV、110 kV和220 kV)变电站地震易损性函数,并提出了一种基于地震易损性函数的变电站地震损坏评估方法。利用该方法可以对变电站的整体损坏级别、设备损坏比例、震后恢复时间和经济损失快速评估。本文研究成果有助于变电站地震应急预案完善和震后第一时间电力应急处置工作的部署与开展。Abstract: Formulating and performing exercise of the earthquake emergency response plan of substation, as well as deploying the post-earthquake power emergency disposal work are premised on the rapid prediction substation damages. In this paper, based on referencing and absorbing the international methodology and results of estimating earthquake damage of the electric power system, and the statistical analysis of domestic substation earthquake damage cases, the earthquake fragility functions of 35 kV, 110 kV and 220 kV substations are constructed using expert judgment method, and proposed an estimation framework for substation earthquake damages based on earthquake fragility function. This method can be used to make an initial evaluation of the overall damage state, equipment damage ratio, restoration time and economic loss of substation. The research results will help to make and improve the earthquake response plan of substation, and the immediate deployment and implementation of electrical emergency response for occurrence of damaging earthquake.
-
Key words:
- Substation /
- The seismic fragility /
- Function lognormal distribution /
- Damage states
1)1 2 国家电网有限公司,2021. 国家电网有限公司地震地质等灾害应急预案(SGCC-ZH-02). -
表 1 变电站地震破坏状态分级表
Table 1. Definitions of damage states for substation
损坏状态分级 功能损坏 电气设备损坏比率 恢复时间/d 破坏状态描述 输出功能 可修复性 完好(N) 正常运行 无需修理 <0.05 0 正常 轻微(S) 输出功率减小 带电修复 0.05(0.01~0.15) 1±0.5 5%隔离开关失效;或5%断路器失效;或5%变压器失效(漏油);或通讯楼轻微损失 中等(M) 带电修复 0.10(0.08~0.40) 3±1.5 40%隔离开关失效;或40%断路器失效;或40%变压器失效(磁柱开裂);或通讯楼中等损失 严重(E) 输出功率中断 修复继续使用 0.55(0.40~0.80) 7±3.5 70%隔离开关失效;或70%断路器失效;或70%变压器失效(散热器开裂);或通讯楼严重损失 震毁(C) 没有修复价值 1.00(0.80~1.00) 30±15 隔离开关、断路器失效全部失效;或100%变压器失效(倾覆),或通讯楼震毁 表 2 国外变电站地震脆弱性参数汇总表
Table 2. Summary of seismic fragility parameters of international substations
变电站类别 PGA均值M/g 对数标准差β 样本数量/个 8类比7类高/% 7lS 0.13 0.65 1 15.40 8lS 0.15 0.70 1 7lM 0.26 0.50 1 11.50 8lM 0.29 0.55 1 7lE 0.34 0.40 1 32.40 8lE 0.45 0.45 1 7lC 0.74 0.40 2 21.60 8lC 0.90 0.45 1 7mS 0.12 0.60 2 30.40 8mS 0.15 0.60 1 7mM 0.22 0.50 3 12.10 8mM 0.25 0.50 1 7mE 0.32 0.40 2 25.00 8mE 0.35 0.40 1 7mC 0.50 0.40 6 46.00 8mC 0.73 0.40 5 7hS 0.09 0.50 1 22.20 8hS 0.11 0.50 1 7hM 0.13 0.40 1 15.40 8hM 0.15 0.45 1 7hE 0.17 0.35 1 17.65 8hE 0.20 0.35 1 7hC 0.40 0.35 4 18.99 8hC 0.47 0.40 1 注:变电站类别中,7类代表标准设计,8类代表抗震加固;l、m、h分别代表低、中、高压。 表 3 变电站震损情况表
Table 3. Substation earthquake damage table
影响烈度 电压等级 变电站(恢复时间/d) 震损情况 Ⅺ 中压(110 kV≤U≤220 kV) 映秀湾, 渔子溪, 太平驿,银杏(重建),擂鼓站(重建) 全部震毁重建 Ⅹ 中压(110 kV≤U≤220 kV) 耿达(严重), 紫坪铺,二台山(重建)、晓坝(重建)、汉旺(重建)、穿心店(重建) 全部震毁重建 Ⅸ 高压(500 kV) 茂县(重建) 震毁重建 中压(110 kV≤U≤220 kV) 草坡,铜钟南新二级,姜射坝,福堂,通口,碧口,安县(重建)、辕门坝(重建)、香山(3)、永安(2)、雎水(4)、乔庄(2)、沐浴(5)、绵竹(12)、东北(1)、麻柳(17) 6座开关站破坏中等到严重,10座变电站震毁2座,震毁率20%。其余恢复时间2~17 d,平均5.8 d 低压(U<110 kV) 桥楼(3)、洛水(1)、遵道(重建) 3座变电站中1座震毁重建,震毁率30%,其余两座平均修复时间2 d Ⅷ 中压(110 kV≤U≤220 kV) 天龙湖, 自一里,木座,沙牌,薛城,红叶二级,金龙潭,桑坪,宝珠寺,云西(10)、新市(15)、两路口(8)、双盛(1)、永宁(2)、万春(16)、孝泉(8)、圣母泉(12)、土塘(16)、八角(5) 9座开关站破坏轻微到中等,10座变电站修复时间1~16 d,平均9.3 d 低压(U<110 kV) 玉泉(4)、莹华(4)、柏隆(1)、灵杰(1)、富新(9) 5座变电站修复时间1~9 d,平均3.8 d Ⅶ 高压(500 kV) 谭家湾(6) 1座变电站修复时间6 d 中压(110 kV≤U≤220 kV) 水牛家、民主(1)、天元(9)、杨嘉(1)、清平(2)、龙桥(2)、风光(1)、广福(1)、万安(10)、古城(11)、孟家(7)、五里堆(12)、南华(12)、斑竹(11)、炳灵宫(11)、小汉(12)、向阳(4) 1座开关站破坏轻微,16座变电站修复时间1~14 d,平均6.7 d 低压(U<110 kV) 黄许(1)、双东(2)、白莲(2)、德新(1)、永太(1)、辑庆(1)、文星(1天)、慧觉(1)、蟠龙(1) 9座变电站修复时间1~2 d,平均1.5 d Ⅵ 中压(110 kV≤U≤220 kV) 竹格多(1) 1座开关站损失轻微 低压(U<110 kV) 龙台(1) 1座变电站恢复时间1 d 表 4 变电站地震脆弱性函数表
Table 4. Parameters of fragility functions for substations
变电站类别 PGA均值/g 对数标准差β 35 kV lS 0.14 0.68 lM 0.28 0.53 lE 0.40 0.43 lC 0.70 0.43 110 kV mS 0.13 0.60 mM 0.24 0.50 mE 0.34 0.40 mC 0.44 0.40 220 kV hS 0.10 0.50 hM 0.17 0.43 hE 0.28 0.35 hC 0.45 0.38 -
方文弟, 2009. “5·12”汶川特大地震对四川电力系统的影响及应对措施调查. 四川水力发电, 28(3): 135—141Fang W. D. , 2009. Influence of May 12 Wenchuan earthquake on Sichuan power system and countermeasures. Sichuan Water Power, 28(3): 135—141. (in Chinese) 贺海磊, 郭剑波, 谢强, 2011. 电气设备的地震灾害易损性分析. 电网技术, 35(4): 25—28He H. L. , Guo J. B. , Xie Q. , 2011. Vulnerability analysis of power equipments caused by earthquake disaster. Power System Technology, 35(4): 25—28. (in Chinese) 刘如山, 张美晶, 邬玉斌等, 2010. 汶川地震四川电网震害及功能失效研究. 应用基础与工程科学学报, 18(S1): 200—211Liu R. S. , Zhang M. J. , Wu Y. B. , et al. , 2010. Damage and failure study of Sichuan electric power grid in Wenchuan earthquake. Journal of Basic Science and Engineering, 18(S1): 200—211. (in Chinese) 刘如山, 张美晶, 王翔鹰等, 2012. 基于设防烈度和震害统计的变电站震害快速评估法. 地震工程与工程振动, 32(5): 152—159Liu R. S. , Zhang M. J. , Wang X. Y. , et al. , 2012. Seismic destruction rapid assessment method of substation based on fortification intensity and earthquake damage statistics. Journal of Earthquake Engineering and Engineering Vibration, 32(5): 152—159. (in Chinese) 晏志勇, 王斌, 周建平等, 2009. 汶川地震灾区大中型水电工程震损调查与分析. 北京: 中国水利水电出版社. 于永清, 李光范, 李鹏等, 2008. 四川电网汶川地震电力设施受灾调研分析. 电网技术, 32(11): T1-T6Yu Y. Q. , Li G. F. , Li P. , et al. , 2008. Investigation and analysis of electric equipment damage in Sichuan power grid caused by Wenchuan earthquake. Power System Technology, 32(11): T1-T6. (in Chinese) 张美晶, 2009. 电力设施震害及其危害性快速评估方法研究. 哈尔滨: 中国地震局工程力学研究所.Zhang M. J. , 2009. Study on rapid evaluation method of electric power facility earthquake damage and its hazard. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) 张中近, 2017. 电力设施地震经济损失快速评估. 哈尔滨: 中国地震局工程力学研究所.Zhang Z. J. , 2017. Rapid evaluation of electric power facility economic loss caused by earthquake. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) Ang A. H. S. , Pires J. A. , Villaverde R. , 1996. A model for the seismic reliability assessment of electric power transmission systems. Reliability Engineering & System Safety, 51(1): 7—22. Dueñas-Osorio L. , Craig J. I. , Goodno B. J. , 2007. Seismic response of critical interdependent networks. Earthquake Engineering & Structural Dynamics, 36(2): 285—306. FEMA, 2022. Hazards earthquake model technical manual: Hazus 5.1[EB/OL]. (2022-07).https://www.fema.gov/sites/default/files/documents/fema_hazus-earthquake-model-technical-manual-5-1.pdf [2022-10-17]. Hwang H. H. M. , Huo J. R. , 1998. Seismic fragility analysis of electric substation equipment and structures. Probabilistic Engineering Mechanics, 13(2): 107—116. doi: 10.1016/S0266-8920(97)00017-9 Pitilakis K., Crowley H., Kaynia A. M., 2014a. SYNER-G: typology definition and fragility functions for physical elements at seismic risk. Dordrecht: Springer. Pitilakis K., Franchin P., Khazai B., et al., 2014b. SYNER-G: systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities. Dordrecht: Springer. Rasulo A. , Goretti A. , Nuti C. , 2019. Performance of lifelines during the 2002 Molise, Italy, earthquake. Earthquake Spectra, 20(S1): 301—314. Schiff A. J., 1999. Guide to improved earthquake performance of electric power systems. Reston: American Society of Civil Engineers. Vanzi I. , 2000. Structural upgrading strategy for electric power networks under seismic action. Earthquake Engineering & Structural Dynamics, 29(7): 1053—1073.