• ISSN 1673-5722
  • CN 11-5429/P

考虑脉冲参数随机性的近断层地震动降维建模

张钦 刘子心 刘章军

张钦,刘子心,刘章军,2023. 考虑脉冲参数随机性的近断层地震动降维建模. 震灾防御技术,18(3):471−482. doi:10.11899/zzfy20230305. doi: 10.11899/zzfy20230305
引用本文: 张钦,刘子心,刘章军,2023. 考虑脉冲参数随机性的近断层地震动降维建模. 震灾防御技术,18(3):471−482. doi:10.11899/zzfy20230305. doi: 10.11899/zzfy20230305
Zhang Qin, Liu Zixin, Liu Zhangjun. Dimension Reduction Modeling of Near-fault Ground Motion Considering Randomness of Pulse Parameters[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 471-482. doi: 10.11899/zzfy20230305
Citation: Zhang Qin, Liu Zixin, Liu Zhangjun. Dimension Reduction Modeling of Near-fault Ground Motion Considering Randomness of Pulse Parameters[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 471-482. doi: 10.11899/zzfy20230305

考虑脉冲参数随机性的近断层地震动降维建模

doi: 10.11899/zzfy20230305
基金项目: 国家自然科学基金项目(51978543、52108444);湖北省高等学校优秀中青年科技创新团队计划项目(T2020010)
详细信息
    作者简介:

    张钦,男,生于1998年。硕士研究生。主要从事工程结构抗震方面研究工作。E-mail:784338243@qq.com

    通讯作者:

    刘章军,男,生于1973年。教授,博士生导师。主要从事工程结构抗灾方面研究工作。E-mail:liuzhangjun73@aliyun.com

Dimension Reduction Modeling of Near-fault Ground Motion Considering Randomness of Pulse Parameters

  • 摘要: 根据50组近断层脉冲型强震动记录,采用连续小波变换提取最强速度脉冲分量,建立最强速度脉冲峰值时刻的统计模型。对近断层地震动加速度高频分量的演变功率谱模型参数进行识别,并利用谱表示-随机函数方法实现了降维模拟,进而积分得到速度高频分量。对脉冲参数进行随机化处理,并采用改进Gabor小波模型随机模拟速度低频分量。将速度高频分量与低频分量叠加得到近断层地震动速度时程。数值算例表明,近断层地震动加速度代表性时程集合的幅值谱和反应谱均与实测记录拟合一致,验证了降维模拟方法的工程适用性。近断层脉冲型地震动的降维模拟与概率密度演化理论相结合,可实现工程结构的随机地震反应与抗震可靠性精细化分析。
  • 图  1  $ {t_{{\text{pk}}}} $$ {M_{\text{W}}} $回归模型

    Figure  1.  Regression model between peak time$ {t_{{\text{pk}}}} $of the strongest velocity pulse and magnitude $ {M_{\text{W}}} $

    图  2  高频能量分布拟合曲线

    Figure  2.  High frequency energy distribution fitting curve

    图  3  低频脉冲模型参数的经验分布函数

    Figure  3.  Empirical distribution functions of low- frequency pulse model parameters

    图  4  近断层地震动高、低频分量代表性时程

    Figure  4.  Representative time-history of high and low frequency components of near-fault ground motions

    图  5  近断层地震动高、低频分量代表性样本集合均值、标准差的目标值与模拟值比较

    Figure  5.  Comparison of mean, standard deviation of representative time-history set of high and low frequency components upon near-fault ground motions with the target values

    图  6  近断层地震动的代表性时程

    Figure  6.  The representative time-histories of near-fault ground motions

    图  7  近断层地震动加速度反应谱、幅值谱模拟值与实测值的比较

    Figure  7.  Comparison of simulated value and measured value of response spectrum and amplitude spectrum of near-fault ground motion acceleration

    表  1  近断层脉冲型地震动记录信息

    Table  1.   Information of the measured records of near-fault pulse-like ground motions

    RSN
    编号
    矩震级
    MW
    断层距
    R/km
    脉冲周期
    Tp/s
    脉冲峰值
    PGV/(cm·s−1
    脉冲峰值
    时刻tpk/s
    RSN
    编号
    矩震级
    MW
    断层距
    R/km
    脉冲周期
    Tp/s
    脉冲峰值
    PGV/(cm·s−1
    脉冲峰值
    时刻tpk/s
    1505.73.101.2349.602.72511617.510.905.9953.006.100
    1596.50.702.3453.507.65011767.54.804.9590.6011.750
    1616.510.404.4036.708.88040406.61.702.02124.2017.860
    1706.57.304.4270.807.39040656.02.901.2235.804.915
    1716.50.103.42116.404.98040986.03.001.3351.603.220
    1736.58.604.5255.207.44541006.03.001.0857.903.185
    1786.512.904.5055.808.21041016.05.500.5231.002.720
    1796.57.004.7980.806.73041026.03.601.0243.503.115
    1806.54.004.1396.507.19541036.04.200.7038.302.970
    1816.51.403.77121.607.30041076.02.501.1981.903.445
    1826.50.604.38111.905.88041136.02.901.1327.002.930
    1846.55.106.2773.507.45541156.02.601.1956.503.120
    1856.57.504.8273.407.07541266.03.800.5743.402.305
    3165.916.704.3960.8010.09068877.018.1012.6059.9031.130
    4516.20.501.0776.803.58568977.08.507.8365.9025.460
    4596.29.901.2337.305.83569117.07.309.92106.1024.840
    5685.86.300.8168.301.40569277.07.107.37116.5025.270
    7236.50.902.39143.9012.20069287.025.7010.6030.2021.590
    8387.334.909.1328.8014.96069427.026.808.0456.5028.090
    8797.32.205.12132.3012.10069607.013.609.3963.8026.220
    9007.323.607.5055.8018.44069627.01.507.1485.7025.390
    11066.91.001.09105.607.82069667.022.308.7665.7026.520
    11146.93.302.83103.009.85069697.020.909.3564.4027.770
    11196.90.301.8195.605.39069757.06.108.9374.1027.480
    11206.91.501.55153.206.17081617.211.308.7272.6039.510
    下载: 导出CSV

    表  2  近断层地震动高频分量模型参数取值

    Table  2.   Simulation parameters of high-frequency component in near-fault ground motion

    参数取值参数取值
    频率离散点数N1 600地震动峰值加速度${ \overline{A}}_{\mathrm{max}} $240 cm·s−2
    截止频率上限$ \omega_{{\rm{u}}} $50π rad·s−1峰值因子$ r $2.6
    截止频率下限$ \omega_{1} $2π rad·s−1场地土卓越圆频率$ \omega_{{\rm{g}}} $15.7 rad·s−1
    频率离散步长$ \Delta \omega $0.094 rad·s−1场地土阻尼比$ \zeta_{{\rm{g}}} $0.887
    高、低频分界限$ f_{{\rm{r}}} $2π rad·s−1基岩卓越圆频率$ \omega_{{\rm{f}}} $1.57 rad·s−1
    地震动持时$ T $30 s基岩阻尼比$ \zeta_{{\rm{f}}} $0.887
    时间步长$ \Delta t $0.02 s样本数量$ n_{{\rm{sel}}} $1 069
    下载: 导出CSV

    表  3  近断层地震动低频脉冲成分模型参数取值

    Table  3.   Simulation parameters of low-frequency component in near-fault ground motion

    模型参数概率分布概率分布系数
    TN对数正态分布M1=1.028 1,S1=0.903 4
    $ \varphi $正态分布M2=−0.66,S2=2.80
    PGV广义极值分布k=0.008 7,Sigma=24.64,Mu=58.47
    $T_{\rm{p}} $威布尔分布Sc=4.998 4,Sa=1.405 5
    注:M1S1分别为对数正态分布的均值和标准差;M2S2分别为正态分布的均值和标准差;SigmaMuk分别为广义极值分布的尺度参数、位置参数和形状参数;ScSa分别为威布尔分布的尺度参数和形状参数。
    下载: 导出CSV
  • 陈笑宇, 王东升, 付建宇 等, 2021. 近断层地震动脉冲特性研究综述. 工程力学, 38(8): 1—14, 54

    Chen X. Y. , Wang D. S. , Fu J. Y. , et al. , 2021. State-of-the-art review on pulse characteristics of near-fault ground motions. Engineering Mechanics, 38(8): 1—14, 54. (in Chinese)
    范增磊, 2017. 非平稳地震动演变功率谱的估计与建模研究. 秦皇岛: 燕山大学.

    Fan Z. L. , 2017. Study on evolution of non-stationary seismic ground motion estimation and modeling of power spectrum. Qinhuangdao: Yanshan University. (in Chinese)
    贾路, 阮鑫鑫, 刘章军, 2019. 近断层脉冲型地震动的降维模拟. 地震研究, 42(4): 516—522

    Jia L. , Ruan X. X. , Liu Z. J. , 2019. Dimension reduction simulation for near-field fault pulse-like ground motion. Journal of Seismological Research, 42(4): 516—522. (in Chinese)
    姜云木, 阮鑫鑫, 刘章军, 2021. 主余震型地震动过程的降维模拟. 振动与冲击, 40(24): 282—292

    Jiang Y. M. , Ruan X. X. , Liu Z. J. , 2021. Dimension-reduction simulation of main aftershock type ground motion process. Journal of Vibration and Shock, 40(24): 282—292. (in Chinese)
    李华聪, 钟菊芳, 2021. 最强脉冲方向分量的周期特性及其影响因素分析. 地震研究, 44(1): 96—104

    Li H. C. , Zhong J. F. , 2021. Analysis on the period characteristics of the strongest pulse direction component and its influence factors. Journal of Seismological Research, 44(1): 96—104. (in Chinese)
    李启成, 杜玉春, 严冬冬 等, 2013. 基于改进的经验格林函数方法的地震动模拟. 地震研究, 36(1): 74—80

    Li Q. C. , Du Y. C. , Yan D. D. , et al. , 2013. Ground motion simulation based on improved empirical Green’s function method. Journal of Seismological Research, 36(1): 74—80. (in Chinese)
    刘启方, 袁一凡, 金星 等, 2006. 近断层地震动的基本特征. 地震工程与工程振动, 26(1): 1—10

    Liu Q. F. , Yuan Y. F. , Jin X. , et al. , 2006. Basic characteristics of near-fault ground motion. Earthquake Engineering and Engineering Vibration, 26(1): 1—10. (in Chinese)
    刘章军, 刘增辉, 刘威, 2017. 全非平稳地震动过程的概率模型及反应谱拟合. 振动与冲击, 36(2): 32—38

    Liu Z. J. , Liu Z. H. , Liu W. , 2017. Probability model of fully non-stationary ground motion with the target response spectrum compatible. Journal of Vibration and Shock, 36(2): 32—38. (in Chinese)
    罗全波, 陈学良, 高孟潭 等, 2018. 近断层速度脉冲与震源机制的关系浅析. 震灾防御技术, 13(3): 646—661

    Luo Q. B. , Chen X. L. , Gao M. T. , et al. , 2018. Relationship between near-fault velocity pulse and focal mechanism. Technology for Earthquake Disaster Prevention, 13(3): 646—661. (in Chinese)
    田玉基, 杨庆山, 卢明奇, 2007. 近断层脉冲型地震动的模拟方法. 地震学报, 29(1): 77—84

    Tian Y. J. , Yang Q. S. , Lu M. Q. , 2007. Simulation method of near-fault pulse-type ground motion. Acta Seismologica Sinica, 29(1): 77—84. (in Chinese)
    王宇航, 2015. 近断层区域划分及近断层速度脉冲型地震动模拟. 成都: 西南交通大学.

    Wang Y. H., 2015. The near-fault region zoning and near-fault velocity pulse-like ground motion simulation. Chengdu: Southwest Jiaotong University. (in Chinese)
    魏勇, 崔建文, 王秋良 等, 2018. 基于合成地震动的2014年鲁甸MS6.5地震场地效应分析. 地震研究, 41(1): 32—37

    Wei Y. , Cui J. W. , Wang Q. L. , et al. , 2018. Analysis on site effect of 2014 Yunnan Ludian MS6.5 earthquake based on simulating ground motion. Journal of Seismological Research, 41(1): 32—37. (in Chinese)
    杨福剑, 王国新, 2019. 一种改进的近断层脉冲型地震动模拟方法. 震灾防御技术, 14(3): 489—500 doi: 10.11899/zzfy20190303

    Yang F. J. , Wang G. X. , 2019. An improved approach for near-fault pulse-like ground motion simulation. Technology for Earthquake Disaster Prevention, 14(3): 489—500. (in Chinese) doi: 10.11899/zzfy20190303
    杨庆山, 田玉基, 2014. 地震地面运动及其人工合成. 北京: 科学出版社.

    Yang Q. S., Tian Y. J., 2014. Earthquake ground motions & artificial generation. Beijing: Science Press. (in Chinese)
    赵晓芬, 温增平, 陈波, 2018. 近断层地震动最强速度脉冲方向分量特性研究. 地震学报, 40(5): 673—688 doi: 10.11939/jass.20170178

    Zhao X. F. , Wen Z. P. , Chen B. , 2018. Characteristics of near-fault velocity pulses in the strongest pulse orientation. Acta Seismologica Sinica, 40(5): 673—688. (in Chinese) doi: 10.11939/jass.20170178
    赵晓芬, 温增平, 谢俊举等, 2021.2018年台湾花莲MW6.4地震近断层地震动方向性差异. 振动与冲击, 40(10): 235—243

    Zhao X. F. , Wen Z. P. , Xie J. J. , et al. , 2021. Ground motion directionality in the 2018 Taiwan Hualien MW 6.4 earthquake. Journal of Vibration and Shock, 40(10): 235—243. (in Chinese)
    Bray J. D. , Rodriguez-Marek A. , 2004. Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering, 24(11): 815—828. doi: 10.1016/j.soildyn.2004.05.001
    Clough R. W. , Penzien J. , 2003. Dynamics of structures. 2 nd ed. Berkeley: Computers and Structures, Inc. , 65—66.
    Deodatis G. , Shinozuka M. , 1989. Simulation of seismic ground motion using stochastic waves. Journal of Engineering Mechanics, 115(12): 2723—2737. doi: 10.1061/(ASCE)0733-9399(1989)115:12(2723)
    Dickinson B. W. , Gavin H. P. , 2011. Parametric statistical generalization of uniform-hazard earthquake ground motions. Journal of Structural Engineering, 137(3): 410—422. doi: 10.1061/(ASCE)ST.1943-541X.0000330
    Howard J. K. , Tracy C. A. , Burns R. G. , 2005. Comparing observed and predicted directivity in near-source ground motion. Earthquake Spectra, 21(4): 1063—1092. doi: 10.1193/1.2044827
    Kalkan E. , Kunnath S. K. , 2006. Effects of fling step and forward directivity on seismic response of buildings. Earthquake Spectra, 22(2): 367—390. doi: 10.1193/1.2192560
    Li J. , Chen J. B. , 2006. The probability density evolution method for dynamic response analysis of non-linear stochastic structures. International Journal for Numerical Methods in Engineering, 65(6): 882—903. doi: 10.1002/nme.1479
    Li J. , Chen J. B. , 2007. The number theoretical method in response analysis of nonlinear stochastic structures. Computational Mechanics, 39(6): 693—708. doi: 10.1007/s00466-006-0054-9
    Liang J. W. , Chaudhuri S. R. , Shinozuka M. , 2007. Simulation of nonstationary stochastic processes by spectral representation. Journal of Engineering Mechanics, 133(6): 616—627. doi: 10.1061/(ASCE)0733-9399(2007)133:6(616)
    Liu Z. J. , Liu W. , Peng Y. B. , 2016. Random function based spectral representation of stationary and non-stationary stochastic processes. Probabilistic Engineering Mechanics, 45: 115—126. doi: 10.1016/j.probengmech.2016.04.004
    Liu Z. J. , Liu Z. X. , Chen D. H. , 2018. Probability density evolution of a nonlinear concrete gravity dam subjected to nonstationary seismic ground motion. Journal of Engineering Mechanics, 144(1): 04017157. doi: 10.1061/(ASCE)EM.1943-7889.0001388
    Mavroeidis G. P. , Papageorgiou A. S. , 2003. A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America, 93(3): 1099—1131. doi: 10.1785/0120020100
    Shahi S. K. , Baker J. W. , 2014. An efficient algorithm to identify strong‐velocity pulses in multicomponent ground motions. Bulletin of the Seismological Society of America, 104(5): 2456—2466. doi: 10.1785/0120130191
    Vanmarcke E. H. , Lai S. S. P. , 1980. Strong-motion duration and RMS amplitude of earthquake records. Bulletin of the Seismological Society of America, 70(4): 1293—1307.
    Yang D. X. , Zhou J. L. , 2015. A stochastic model and synthesis for near-fault impulsive ground motions. Earthquake Engineering & Structural Dynamics, 44(2): 243—264.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  8
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回