• ISSN 1673-5722
  • CN 11-5429/P

基于角钢为耗能构件的自复位桥墩抗震性能数值分析

高明 崔恩文 温永昕 王俊杰 钱冬

高明,崔恩文,温永昕,王俊杰,钱冬,2025. 基于角钢为耗能构件的自复位桥墩抗震性能数值分析. 震灾防御技术,20(1):163−173. doi:10.11899/zzfy20230283. doi: 10.11899/zzfy20230283
引用本文: 高明,崔恩文,温永昕,王俊杰,钱冬,2025. 基于角钢为耗能构件的自复位桥墩抗震性能数值分析. 震灾防御技术,20(1):163−173. doi:10.11899/zzfy20230283. doi: 10.11899/zzfy20230283
Gao Ming, Cui Enwen, Wen Yongxin, Wang Junjie, Qian Dong. Numerical Analysis of Seismic Performance of Self-resetting Bridge Piers Based on Angle Steel as Energy Dissipation Component[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 163-173. doi: 10.11899/zzfy20230283
Citation: Gao Ming, Cui Enwen, Wen Yongxin, Wang Junjie, Qian Dong. Numerical Analysis of Seismic Performance of Self-resetting Bridge Piers Based on Angle Steel as Energy Dissipation Component[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 163-173. doi: 10.11899/zzfy20230283

基于角钢为耗能构件的自复位桥墩抗震性能数值分析

doi: 10.11899/zzfy20230283
基金项目: 国家自然科学基金(51878315)
详细信息
    作者简介:

    高明,男,生于1986年。讲师,硕士。主要从事结构抗震工程研究。E-mail:491970800@qq.com

    通讯作者:

    崔恩文,男,生于1987年。副教授。主要从事生命线工程抗震研究。E-mail:1727170471@qq.com

Numerical Analysis of Seismic Performance of Self-resetting Bridge Piers Based on Angle Steel as Energy Dissipation Component

  • 摘要: 本文提出以角钢作为节段拼装桥墩耗能构件的新型自复位预制节段桥墩(Self-centering Precast Segmental Bridge Pier,SPSBP),基于ABAQUS有限元软件建立三维仿真数值模型,数值模拟结果与拟静力试验结果基本吻合,SPSBP具有自复位能力较好、残余变形较小、耗能能力强等优点。进一步对初始预应力、耗能角钢厚度、长度及节段高宽比等影响因素进行参数化分析,研究结果表明,增加初始预应力可有效提高结构承载力和刚度,对结构耗能的影响不大;增加角钢厚度可提高SPSBP最大承载力,且有效提高其在地震作用下的耗能能力;角钢长度对承载力提高的影响不大;节段高宽比增大,可在保证刚度的同时提高承载力。
  • 图  1  SPSBP试件设计(单位:毫米)

    Figure  1.  Design of specimen(Unit: mm)

    图  2  装配完成

    Figure  2.  Assembly completion drawing

    图  3  新型桥墩结构建模

    Figure  3.  Finite element modeling

    图  4  网格划分

    Figure  4.  Finite element mesh of each component

    图  5  滞回曲线对比

    Figure  5.  Comparison of the hysteretic curves

    图  6  骨架曲线对比

    Figure  6.  Comparison of skeleton curves

    图  7  桥墩损伤情况

    Figure  7.  Damaged parts of bridge piers

    图  8  混凝土等效塑性应变云图

    Figure  8.  Contour of the equivalent plastic strain of concrete

    图  9  节段钢筋骨架等效应力云图(单位:兆帕)

    Figure  9.  Contour of the equivalent stress of segment reinforcement (Unit: MPa)

    图  10  角钢变形

    Figure  10.  Deformation of the steel angle

    图  11  预应力筋合力对比

    Figure  11.  Comparison of prestressed reinforcement force

    图  12  角钢测点应变随加载位移变化曲线

    Figure  12.  Curve of strain variation with loading displacement at the measuring point of the east angle steel

    图  13  转角变形云图

    Figure  13.  Contour of deformation at the corner of the pier

    图  14  有无钢板试件滞回曲线

    Figure  14.  Hysteretic curves of the piers with and without steel plates

    图  15  有无钢板试件刚度退化曲线

    Figure  15.  Stiffness degradation curve of the piers with and without steel plates

    图  16  有无钢板试件骨架曲线

    Figure  16.  Skeleton curves of the piers with and without steel plates

    图  17  不同初始预应力下试件滞回曲线

    Figure  17.  Hysteretic curves of the piers with various initial prestressing forces

    图  18  不同初始预应力下试件刚度退化曲线

    Figure  18.  Stiffness degradation curve of the piers with various initial prestressing forces

    图  19  不同初始预应力下试件耗散能量

    Figure  19.  Dissipated energy of the piers with various initial prestressing forces

    图  20  不同初始预应力下试件残余位移

    Figure  20.  Residual drift of the piers with various initial prestressing forces

    图  21  不同角钢厚度下试件滞回曲线

    Figure  21.  Hysteretic curves of the piers with various thicknesses of the steel angle

    图  22  不同角钢厚度下试件耗散能量

    Figure  22.  Dissipated energy of the piers with various thicknesses of the steel angle

    Figure  23.  Stiffness degradation curve of the piers with various thicknesses of the steel angle

    图  24  不同角钢长度下试件滞回曲线

    Figure  24.  Hysteretic curves of the piers with various lengths of the steel angle

    图  25  不同角钢长度下试件耗散能量

    Figure  25.  Dissipated energy of the piers with various lengths of the steel angle

    图  26  不同角钢长度下试件刚度退化曲线

    Figure  26.  Hysteretic curves of the piers with various lengths of the steel angle

    图  27  不同高宽比下试件滞回曲线

    Figure  27.  Hysteretic curves of the piers with various aspect ratios

    图  28  不同高宽比下试件耗散能量

    Figure  28.  Dissipated energy of the piers with various aspect ratios

    图  29  不同高宽比下试件刚度退化曲线

    Figure  29.  Stiffness degradation curve dissipated energy of the piers with various aspect ratios

    表  1  钢材力学性能

    Table  1.   Steel properties

    钢材型号 弹性模量E/MPa 屈服强度fy/MPa 极限强度fu/MPa
    Q235 2.0×105 281 347
    HPB300 2.1×105 397 511
    HRP400 2.0×105 467 627
    预应力筋 1.95×105 1 720 1 912
    下载: 导出CSV

    表  2  对比模型参数

    Table  2.   Comparison model parameters

    试件编号 耗能角钢
    厚度ta/mm
    初始预应力
    Pt/kN
    耗能角钢
    长度la/mm
    节段高宽比l/b
    初始刚度
    K0/(kN·mm−1)
    最大残余位移
    $ {{U}}_{\text{r}} $/mm
    总体耗能/
    (kN·mm)
    M-1 10 420 250 1.2 14.1 2.75 5 179.9
    M-2 8 420 250 1.2 13.4 3.24 3 245.7
    M-3 12 420 250 1.2 14.8 2.16 6 483.2
    M-4 10 280 250 1.2 9.2 4.65 4 804.9
    M-5 10 520 250 1.2 16.8 0.65 4 914.3
    M-6 10 420 180 1.2 13.9 3.10 4 774.3
    M-7 10 420 280 1.2 14.1 2.73 5 454.2
    M-8 10 420 250 1.4 18.7 0.23 7 490.7
    M-9 10 420 250 1.0 10.4 4.02 3 405.3
    M-10 10 420 250 1.2 13.8 2.97 2 217.2
    下载: 导出CSV
  • 韩强,董慧慧,王利辉等,2021. 基于可更换构件的可恢复功能桥梁防震结构研究综述. 中国公路学报,34(9):215−230. doi: 10.3969/j.issn.1001-7372.2021.09.018

    Han Q., Dong H. H., Wang L. H., et al., 2021. Review of seismic resilient bridge structures with replaceable members. China Journal of Highway and Transport, 34(9): 215−230. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.09.018
    贾俊峰,魏博,欧进萍等,2021. 外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究. 振动与冲击,40(5):154−162.

    Jia J. F., Wei B., Ou J. P., et al., 2021. Tests for seismic performance of prefabricated self-centering bridge piers with external replaceable energy dissipator. Journal of Vibration and Shock, 40(5): 154−162. (in Chinese)
    石岩,钟正午,秦洪果等,2021. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法. 工程力学,38(8):166−177,203. doi: 10.6052/j.issn.1000-4750.2020.08.0575

    Shi Y., Zhong Z. W., Qin H. G., et al., 2021. Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with lead-extrusion dampers. Engineering Mechanics, 38(8): 166−177,203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0575
    王景全,王震,高玉峰等,2019. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用. 工程力学,36(3):1−23.

    Wang J. Q., Wang Z., Gao Y. F., et al., 2019. Review on aseismic behavior of precast piers: new material, new concept, and new application. Engineering Mechanics, 36(3): 1−23. (in Chinese)
    Cai X. N., Zhu Y. Z., Wang J. J., et al., 2023. Seismic behavior of self-centering precast segmental bridge piers with external auxetic steel shear panel dampers. Structures, 58: 105647. doi: 10.1016/j.istruc.2023.105647
    El Gawady M. A., Sha'lan A., 2011. Seismic behavior of self-centering precast segmental bridge bents. Journal of Bridge Engineering, 16(3): 328−339. doi: 10.1061/(ASCE)BE.1943-5592.0000174
    Guo T., Cao Z. L., Xu Z. K., et al., 2016. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability. Journal of Structural Engineering, 142(1): 04015088. doi: 10.1061/(ASCE)ST.1943-541X.0001357
    Jia J. F., Zhang K. D., Wu S. W., et al., 2020. Seismic performance of self-centering precast segmental bridge columns under different lateral loading directions. Engineering Structures, 221: 111037. doi: 10.1016/j.engstruct.2020.111037
    Li C., Hao H., Bi K. M., 2017. Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading. Engineering Structures, 148: 373−386. doi: 10.1016/j.engstruct.2017.06.062
    Li C., Bi K. M., Hao H., 2019. Seismic performances of precast segmental column under bidirectional earthquake motions: shake table test and numerical evaluation. Engineering Structures, 187: 314−328. doi: 10.1016/j.engstruct.2019.03.001
    Mander J. B, Cheng C. T, 1997. Seismic resistance of bridge piers based on damage avoidance design. New York: National Center for Earthquake Engineering Research, State University of New York at Buffalo.
    Ou Y. C., Wang P. H., Tsai M. S., et al., 2010. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions. Journal of Structural Engineering, 136(3): 255−264. doi: 10.1061/(ASCE)ST.1943-541X.0000110
    Tazarv M., Saiid Saiidi M., 2016. Low-damage precast columns for accelerated bridge construction in high seismic zones. Journal of Bridge Engineering, 21(3): 4015056. doi: 10.1061/(ASCE)BE.1943-5592.0000806
    Wang Z., Wang J. Q., Tang Y. C., et al., 2018. Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters. Engineering Structures, 177: 540−555. doi: 10.1016/j.engstruct.2018.10.012
  • 加载中
图(29) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  12
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 录用日期:  2024-05-28
  • 修回日期:  2024-03-27
  • 网络出版日期:  2025-04-18
  • 刊出日期:  2025-03-30

目录

    /

    返回文章
    返回