• ISSN 1673-5722
  • CN 11-5429/P

沉管隧道纵向抗震韧性评价方法研究

李心熙 禹海涛

李心熙,禹海涛,2023. 沉管隧道纵向抗震韧性评价方法研究. 震灾防御技术,18(1):37−43. doi:10.11899/zzfy20230105. doi: 10.11899/zzfy20230105
引用本文: 李心熙,禹海涛,2023. 沉管隧道纵向抗震韧性评价方法研究. 震灾防御技术,18(1):37−43. doi:10.11899/zzfy20230105. doi: 10.11899/zzfy20230105
Li Xinxi, Yu Haitao. Seismic Resilience Assessment for Longitudinal Response of Immersed Tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 37-43. doi: 10.11899/zzfy20230105
Citation: Li Xinxi, Yu Haitao. Seismic Resilience Assessment for Longitudinal Response of Immersed Tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 37-43. doi: 10.11899/zzfy20230105

沉管隧道纵向抗震韧性评价方法研究

doi: 10.11899/zzfy20230105
基金项目: 国家自然科学基金(41922059、42177134)
详细信息
    作者简介:

    李心熙,女,生于1995年。博士研究生。主要从事地下结构抗震研究工作。E-mail:2010049@tongji.edu.cn

    通讯作者:

    禹海涛,男,生于1983年。教授,博士生导师。主要从事地下结构防灾减灾研究工作。E-mail:yuhaitao@tongji.edu.cn

Seismic Resilience Assessment for Longitudinal Response of Immersed Tunnels

  • 摘要: 抗震韧性是评估结构抗震性能的重要手段,但目前对沉管隧道纵向抗震韧性评价的研究较缺乏。基于梁-弹簧模型建立能够合理考虑沉管隧道结构特征及接头构造的沉管隧道多尺度分析模型,选择合理的评估指标,根据不同极限状态定义获得地震易损性曲线,通过构建合理的性能恢复函数计算隧道韧性指数,从而建立沉管隧道抗震韧性评估方法,并以某沉管隧道实际工程为例进行隧道抗震韧性分析,揭示地震动强度及地层-结构相对刚度比等关键参数的影响规律。研究结果表明,随着PGA的增加,隧道震后剩余功能函数显著下降,隧道抗震韧性明显降低;隧道韧性指数随着地层-结构相对刚度比的增大而增大。
  • 图  1  沉管隧道多尺度模型

    Figure  1.  Multi-scale model of immersed tunnel

    图  2  抗震韧性评价方法模型(Bruneau,2007

    Figure  2.  Assessing model of seismic resilience (Bruneau, 2007

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  沉管隧道纵向地震易损性曲线

    Figure  4.  Longitudinal seismic fragility curves of immersed tunnel

    图  5  隧道性能恢复函数(FEMA,2020

    Figure  5.  Tunnel restoration curves (FEMA, 2020

    图  6  不同PGA下沉管隧道性能恢复曲线

    Figure  6.  Resilience curves of the recovery of functionality with time for immersed tunnel with different PGAs

    图  7  沉管隧道抗震韧性指数

    Figure  7.  Resilience index of immersed tunnel

    图  8  不同土-结构相对刚度比下沉管隧道抗震韧性指数

    Figure  8.  Resilience index with different soil-structure relative stiffness ratios

    表  1  损伤状态定义

    Table  1.   Definitions of Each Damage State

    损伤状态损伤指标范围
    正常使用管节接头相对张合量≤2 cm,最大错台量≤0.5 cm,M/MRd≤1
    轻微破坏管节接头相对张合量≤4 cm,最大错台量≤1 cm,M/MRd≤1.5
    中等破坏M/MRd≤2.5
    严重破坏M/MRd≤3.5
    下载: 导出CSV

    表  2  韧性等级划分(Huang等,2022

    Table  2.   Definitions of resilience grade(Huang et al., 2022

    韧性等级韧性指数R范围
    0.9≤R<1
    0.6≤R<0.9
    R<0.6
    下载: 导出CSV
  • 路德春, 马超, 杜修力等, 2022. 城市地下结构抗震韧性研究进展. 中国科学: 技术科学, 52(10): 1469—1483 doi: 10.1360/SST-2021-0013

    Lu D. C. , Ma C. , Du X. L. , et al. , 2022. Earthquake resilience of urban underground structures: state of the art. Scientia Sinica Technologica, 52(10): 1469—1483. (in Chinese) doi: 10.1360/SST-2021-0013
    邱大鹏, 2019. 大跨度地下框架结构地震响应与减震控制措施. 大连: 大连理工大学.

    Qiu D. P., 2019. Seismic responses and control measures of underground large scale frame structures. Dalian: Dalian University of Technology. (in Chinese)
    王涛, 2021. 建筑抗震韧性评价研究进展. 城市与减灾, (4): 33—38.
    禹海涛, 吴胤翔, 涂新斌等, 2020. 盾构隧道纵向地震响应的多尺度分析方法. 中国公路学报, 33(1): 138—144, 152 doi: 10.19721/j.cnki.1001-7372.2020.01.014

    Yu H. T. , Wu Y. X. , Tu X. B. , et al. , 2020. Multi-scale method for longitudinal seismic response analysis of shield tunnels. China Journal of Highway and Transport, 33(1): 138—144, 152. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2020.01.014
    禹海涛, 宋毅, 李亚东等, 2021. 沉管隧道多尺度方法与地震响应分析. 同济大学学报(自然科学版), 49(6): 807—815

    Yu H. T. , Song Y. , Li Y. D. , et al. , 2021. Multi-scale method and seismic response analysis of immersed tunnel. Journal of Tongji University (Natural Science), 49(6): 807—815. (in Chinese)
    禹海涛, 李心熙, 袁勇等, 2022. 沉管隧道纵向地震易损性分析方法. 中国公路学报, 35(10): 13—22

    Yu H. T. , Li X. X. , Yuan Y. , et al. , 2022. Seismic vulnerability analysis method for longitudinal response of immersed tunnels. China Journal of Highway and Transport, 35(10): 13—22. (in Chinese)
    袁万城, 王思杰, 李怀峰等, 2021. 桥梁抗震智能与韧性的发展. 中国公路学报, 34(2): 98—117 doi: 10.19721/j.cnki.1001-7372.2021.02.002

    Yuan W. C. , Wang S. J. , Li H. F. , et al. , 2021. Development of intelligence and resilience for bridge seismic design. China Journal of Highway and Transport, 34(2): 98—117. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2021.02.002
    中华人民共和国交通运输部, 2020. JTG 2232—2019 公路隧道抗震设计规范. 北京: 人民交通出版社.

    Ministry of Transport of the People’s Republic of China, 2020. JTG 2232—2019 Specifications for seismic design of highway tunnels. Beijing: China Communications Press. (in Chinese)
    庄海洋, 付继赛, 朱明轩等, 2019. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析. 隧道与地下工程灾害防治, 1(3): 57—67

    Zhuang H. Y. , Fu J. S. , Zhu M. X. , et al. , 2019. Seismic performance of underground subway station with elastic slipping bearing fixed on the top of columns. Hazard Control in Tunnelling and Underground Engineering, 1(3): 57—67. (in Chinese)
    Alipour A. , Shafei B. , 2016. Seismic resilience of transportation networks with deteriorating components. Journal of Structural Engineering, 142(8): C4015015. doi: 10.1061/(ASCE)ST.1943-541X.0001399
    Anwar G. A. , Dong Y. , Zhai C. H. , 2020. Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7): 1454—1472. doi: 10.1177/1369433219895363
    Argyroudis S. A. , Pitilakis K. D. , 2012. Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering, 35: 1—12. doi: 10.1016/j.soildyn.2011.11.004
    Bocchini P. , Frangopol D. M. , 2012. Optimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segment. Journal of Bridge Engineering, 17(1): 117—129. doi: 10.1061/(ASCE)BE.1943-5592.0000201
    Bruneau M. , Chang S. E. , Eguchi R. T. , et al. , 2003. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4): 733—752. doi: 10.1193/1.1623497
    Bruneau M. , Reinhorn A. , 2007. Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 23(1): 41—62. doi: 10.1193/1.2431396
    Chen Z. Y. , Zhou Y. , 2019. Seismic performance of framed underground structures with self-centering energy-dissipation column base. Advances in Structural Engineering, 22(13): 2809—2822. doi: 10.1177/1369433219852043
    Cimellaro G. P. , Reinhorn A. M. , Bruneau M. , 2010. Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11): 3639—3649. doi: 10.1016/j.engstruct.2010.08.008
    Dong Y. , Frangopol D. M. , 2015. Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Engineering Structures, 83: 198—208. doi: 10.1016/j.engstruct.2014.10.050
    FEMA, 2020. Hazus earthquake model technical manual, Hazus 4.2 SP3. (2020-10)[2022-10-31]. https://www.fema.gov/flood-maps/tools-resources/flood-map-products/hazus/user-technical-manuals
    Huang Z. K. , Zhang D. M. , Pitilakis K. , et al. , 2022. Resilience assessment of tunnels: framework and application for tunnels in alluvial deposits exposed to seismic hazard. Soil Dynamics and Earthquake Engineering, 162: 107456. doi: 10.1016/j.soildyn.2022.107456
    Liu T. , Chen Z. Y. , Yuan Y. , et al. , 2017. Fragility analysis of a subway station structure by incremental dynamic analysis. Advances in Structural Engineering, 20(7): 1111—1124. doi: 10.1177/1369433216671319
    Ma C. , Lu D. C. , Du X. L. , 2018. Seismic performance upgrading for underground structures by introducing sliding isolation bearings. Tunnelling and Underground Space Technology, 74: 1—9. doi: 10.1016/j.tust.2018.01.007
    St John C. M. , Zahrah T. F. , 1987. Aseismic design of underground structures. Tunnelling and Underground Space Technology, 2(2): 165—197. doi: 10.1016/0886-7798(87)90011-3
    Wang J. N., 1993. Seismic design of tunnels: a state-of-the-art approach. New York: Parsons Brinckerhoff Quade & Douglas.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  55
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回