• ISSN 1673-5722
  • CN 11-5429/P

鄂尔多斯西缘地区地震动高频衰减特性初步研究

包金哲 王树波 张帆

包金哲,王树波,张帆,2021. 鄂尔多斯西缘地区地震动高频衰减特性初步研究. 震灾防御技术,16(2):293−301. doi:10.11899/zzfy20210208. doi: 10.11899/zzfy20210208
引用本文: 包金哲,王树波,张帆,2021. 鄂尔多斯西缘地区地震动高频衰减特性初步研究. 震灾防御技术,16(2):293−301. doi:10.11899/zzfy20210208. doi: 10.11899/zzfy20210208
Bao Jinzhe, Wang Shubo, Zhang Fan. A Preliminary Study on the Attenuation Characteristics of High Frequency Ground Motionin the Western Margin of Ordos[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 293-301. doi: 10.11899/zzfy20210208
Citation: Bao Jinzhe, Wang Shubo, Zhang Fan. A Preliminary Study on the Attenuation Characteristics of High Frequency Ground Motionin the Western Margin of Ordos[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 293-301. doi: 10.11899/zzfy20210208

鄂尔多斯西缘地区地震动高频衰减特性初步研究

doi: 10.11899/zzfy20210208
基金项目: 中国地震局监测、预报、科研三结合课题(3JH202001015);中国地震局地震科技星火计划(XH20014)
详细信息
    作者简介:

    包金哲,男,生于1986年。工程师。主要从事强震动观测方面的研究。E-mail:240880500@qq.com

    通讯作者:

    王树波,男,生于1980年。高级工程师。主要从事强震动观测工作。E-mail:21560681@qq.com

A Preliminary Study on the Attenuation Characteristics of High Frequency Ground Motionin the Western Margin of Ordos

  • 摘要: 以鄂尔多斯西缘地区(34°N—42°N,103°E—109°E)为研究对象,基于2007—2020年研究区域内14个强震动台站记录到的116条强震记录(1≤MS≤8),采用加速度反应谱法,通过MATLAB软件编程拟合鄂尔多斯西缘地区kappa值与震中距的线性回归关系。研究结果表明,鄂尔多斯西缘地区强震台站高频衰减参数kappa0值为0.01545~0.06560 s;等效剪切波速(VS20VS30)与震中距存在对数关系;随着VS20VS30的增大,kappa0值逐渐减至0。
  • 图  1  台站分布及地质构造

    Figure  1.  The distribution of seismograph station and geologic structure

    图  2  Anderson等(1984)经典计算方法计算的kappa值

    Figure  2.  Anderson&Hough's the classical method calculates k

    图  3  鄂尔多斯西缘地区14个台站kappa值与震中距拟合关系

    Figure  3.  The fitting relationship between kappa and epicentral distance of 14 stations in the western margin of Erdos region

    图  4  震级与震中距关系分布图

    Figure  4.  Distribution of earthquake magnitude and epicenter distance

    图  5  震级与峰值加速度PGA关系分布图

    Figure  5.  Distribution of earthquake magnitude and PGA(peak acceleration value)

    图  6  巴彦木仁、磴口台站kappa值与震中距拟合关系

    Figure  6.  Fitting relationship between kappa and epicenter distance at Banyanmuren and Dengkou station

    图  7  kappa0值与剪切波速VS20VS30拟合关系曲线

    Figure  7.  The fitting relationship between kappa0 and shear-wave(VS20VS30)velocity

    表  1  研究区域地震台站信息

    Table  1.   The research area seismic station information

    序号台站名称经度纬度记录器型号场地类型
    1巴彦浩特105.7°E38.8°NETNA土层
    2巴彦木仁106.7°E39.9°NETNA土层
    3宝丰106.3°E39.0°NMR-2002土层
    4磴口106.9°E40.3°NETNA土层
    5干盐池105.3°E36.6°NMR-2002土层
    6公地106.8°E40.6°NETNA土层
    7吉兰泰105.7°E39.7°NETNA土层
    8临河107.6°E40.8°NETNA土层
    9灵武106.3°E38.1°NMR-2002土层
    10前进农场106.4°E38.8°NMR-2002土层
    11青铜峡106.0°E38.0°NMR-2002基岩
    12沙海106.9°E40.9°NETNA土层
    13乌海106.8°E39.4°NETNA土层
    14西吉105.4°E35.5°NMR-2002土层
    下载: 导出CSV

    表  2  kappa值与震中距拟合结果

    Table  2.   The relationship between kappa and epicentral distance

    台站名称方向回归方程K0/s拟合优度值/R2$ {{\bar{{K}}}_{\rm{0}}}$/sVS20/m·s−1VS30/m·s−1
    巴彦浩特N-Skappa=0.000 3R+0.02640.02640.98030.02530343.05370.2
    E-Wkappa=0.000 3R+0.02420.02420.9854
    巴彦木仁N-Skappa=0.000 2R+0.03630.03630.86910.03485353.4389.4
    E-Wkappa=0.000 2R+0.03340.03340.9280
    宝丰N-Skappa=0.000 1R+0.06870.06870.60550.06560180.4222.1
    E-Wkappa=0.000 1R+0.06250.06250.7876
    磴口N-Skappa=0.000 1R+0.06050.06050.89710.05845231.7261.7
    E-Wkappa=0.000 1R+0.05640.05640.9425
    干盐池N-Skappa=0.000 1R+0.05310.05310.75420.05245317.4357.3
    E-Wkappa=0.000 1R+0.05180.05180.7194
    公地N-Skappa=0.000 2R+0.05410.05410.97900.05450222.7251.2
    E-Wkappa=0.000 2R+0.05490.05490.9730
    吉兰泰N-Skappa=0.000 2R+0.05260.05260.88120.05525327.7335.8
    E-Wkappa=0.000 2R+0.05790.05790.7826
    临河N-Skappa=0.000 1R+0.05300.05300.99770.05175232.3249.7
    E-Wkappa=0.000 1R+0.05050.05050.9960
    灵武N-Skappa=0.000 3R+0.04490.04490.99960.04415292.6325.1
    E-Wkappa=0.000 3R+0.04340.04340.9957
    前进农场N-Skappa=0.000 3R+0.06370.06370.75360.06555209.5248.9
    E-Wkappa=0.000 3R+0.06740.06740.6815
    青铜峡N-Skappa=0.000 1R+0.04280.04280.49870.04315219.0260.0
    E-Wkappa=0.000 1R+0.04350.04350.6287
    沙海N-Skappa=0.000 2R+0.04890.04890.97430.04870188.3216.5
    E-Wkappa=0.000 2R+0.04850.04850.9710
    乌海N-Skappa=0.000 5R+0.01550.01550.73200.01545352.7390.5
    E-Wkappa=0.000 5R+0.01540.01540.6702
    西吉N-Skappa=0.000 1R+0.04290.04290.47130.04240195.1228.7
    E-Wkappa=0.000 1R+0.04190.04190.4909
    下载: 导出CSV

    表  3  巴彦木仁、磴口台站kappa值与震中距拟合结果

    Table  3.   Fitting results of kappa value and epicenter distance at Bayanmuren and Dengkou station

    台站名称方向回归方程K0/s拟合优度值/R2
    巴彦木仁N-Skappa=0.000 3R+0.02750.02750.6186
    E-Wkappa=0.000 3R+0.02660.02660.7081
    磴口NSkappa=0.000 1R+0.06500.06500.2447
    EWkappa=0.000 1R+0.05620.05620.6064
    下载: 导出CSV
  • [1] 白立新, 成云辉, 张杰等, 2019. 河北永清M4.3地震北京烈度仪台网记录分析. 震灾防御技术, 14(1): 210—219. doi: 10.11899/zzfy20190120

    Bai L. X., Cheng Y. H., Zhang J., et al., 2019. Analysis of the recoed of Beijing seismic intensity meter network for the M 4.3 Yongqing earthquake. Technology for Earthquake Disaster Prevention, 14(1): 210—219. (in Chinese) doi: 10.11899/zzfy20190120
    [2] 崔建文, 李正光, 赵云旭, 2007. 2007年宁洱6.4级地震强震动观测记录. 地震研究, 30(4): 384—388. doi: 10.3969/j.issn.1000-0666.2007.04.013

    Cui J. W., Li Z. G., Zhao Y. X., 2007. Strong motion observation records of the 2007 Ning’er, Yunnan, MS6.4 earthquake. Journal of Seismological Research, 30(4): 384—388. (in Chinese) doi: 10.3969/j.issn.1000-0666.2007.04.013
    [3] 高祥林, 马晓静, 李晓丽, 2010. 亚洲东部“大三角”地震构造区的周边和深部动力环境. 地学前缘, 17(4): 33—42.

    Gao X. L., Ma X. J. Li X. L., 2010. A surrounding and deep dynamic context of the great triangle-shaped seismic region in the eastern Asia continent. Earth Science Frontiers, 17(4): 33—42. (in Chinese)
    [4] 李文倩, 2014. 用数字地震台网小震数据建立兰州和华北地区强地震动衰减关系. 哈尔滨: 中国地震局工程力学研究所.

    Li W. Q., 2014. Strong ground motion attenuation relationships for Lanzhou and North China from small earthquake records by China earthquake networks. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    [5] 陶正如, 陶夏新, 2015. 美国2014地震区划中采用的地震动衰减关系. 世界地震工程, 31(3): 78—84.

    Tao Z. R., Tao X. X., 2015. Ground motion attenuation relationships adopted in 2014 update of the US national seismic hazard maps. World Earthquake Engineering, 31(3): 78—84. (in Chinese)
    [6] 万永革, 2012. 数字信号处理的MATLAB实现. 2版. 北京: 科学出版社.
    [7] 朱百慧, 2016. 强震数据Kappa值影响因素的讨论. 哈尔滨: 中国地震局工程力学研究所.

    Zhu B. H., 2016. The influence factors of Kappa from strong motion records. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    [8] Anderson J. G., Hough S. E., 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society ofAmerica, 74(5): 1969—1993.
    [9] Anderson J. G., 1986. Implication of attenuation for studies of the earthquake source. American: Earthquake Source Mechanics. American Geophysical Union, 37: 311—318.
    [10] Anderson, J. G., Humphrey J. R. Jr., 1991. A least squares method for objective determination of earthquake source parameters. Seismological Research Letters, 62(3—4): 201—209.
    [11] Ktenidou O. J., Gélis C., Bonilla L. F., 2013. A study on the variability of Kappa (κ) in a borehole: implications of the computation process. Bulletin of the Seismological Society of America, 103(2A): 1048—1068. doi: 10.1785/0120120093
    [12] Sun X. D., Tao X. X., Duan S. S., et al., 2013. Kappa (k) derived from accelerograms recorded in the 2008 Wenchuanmainshock, Sichuan, China. Journal of Asian Earth Sciences, 73: 306—316. doi: 10.1016/j.jseaes.2013.05.008
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  51
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回