[1] |
陈苏, 周越, 李小军等, 2018. 近海域地震动的时频特征与工程特性. 振动与冲击, 37(16): 227—233.Chen S., Zhou Y., Li X. J., et al., 2018. Time-frequency and engineering characteristics on offshore ground motion. Journal of Vibration and Shock, 37(16): 227—233. (in Chinese)
|
[2] |
高孟潭, 2015. GB 18306—2015《中国地震动参数区划图》宣贯教材. 北京: 中国质检出版社, 中国标准出版社, 1—15.
|
[3] |
郭增建, 杨国军, 秦保燕等, 1987. 中国海域及其相邻海域地震烈度区划图及简要说明. 西北地震学报, 9(4): 74—79.Guo Z. J., Yang G. J., Qin B. Y., et al., 1987. Breif illustration on the seismic zoning of the sea area of China and its vicinity. Northwestern Seismological Journal, 9(4): 74—79. (in Chinese)
|
[4] |
郭增建, 秦保燕, 郭安宁等, 1999. 关于1987年中国海域地震烈度区划图的修定. 西北地震学报, 21(1): 99-102.Guo Z. J., Qin B. Y., Guo A. N., et al., 1999. A correction of the seismic zoning map of sea areas in China and its vicinity. Northwestern Seismological Journal, 21(1): 99-102. (in Chinese)
|
[5] |
胡进军, 刁红旗, 谢礼立, 2013. 海底强地震动观测及其特征的研究进展. 地震工程与工程振动, 33(6): 1—8.Hu J. J., Diao H. Q., Xie L. L., 2013. Review of observation and characteristics of seafloor strong motion. Journal of Earthquake Engineering and Engineering Vibration, 33(6): 1—8. (in Chinese)
|
[6] |
胡进军, 郑旭, 郝彦春等, 2017. 俯冲带地震动特征及其衰减规律探讨. 地球物理学报, 60(5): 1773—1787. doi: 10.6038/cjg20170514Hu J. J., Zheng X., Hao Y. C., et al., 2017. Characterization of strong motion of subduction earthquakes and its attenuation relationship. Chinese Journal of Geophysics, 60(5): 1773—1787. (in Chinese) doi: 10.6038/cjg20170514
|
[7] |
胡进军, 郑旭, 谢礼立, 2018. 基于混合方法的南海海域地震动衰减关系研究. 土木工程学报, 51(7): 36—49.Hu J. J., Zheng X., Xie L. L., 2018. Derivation of ground motion attenuation relation for earthquake in the South China Sea areas based on a hybrid method. China Civil Engineering Journal, 51(7): 36—49. (in Chinese)
|
[8] |
兰景岩, 卢滔, 吕悦军等, 2013. 海底软弱场地非线性地震反应及其应用研究. 土木工程学报, 46(S1): 172—179.Lan J. Y., Lu T., Lü Y. J., et al., 2013. Nonlinear seismic ground response analysis and implications for soft site in Bohai seafloor. China Civil Engineering Journal, 46(S1): 172—179. (in Chinese)
|
[9] |
李金成, 朱达力, 朱镜清, 2001. 二维不规则海底地形对海底地震动的影响. 自然灾害学报, 10(4): 142—147. doi: 10.3969/j.issn.1004-4574.2001.04.027Li J. C., Zhu D. L., Zhu J. Q., 2001. Effects of 2-D irregular seafloor topography on undersea ground motion. Journal of Natural Disasters, 10(4): 142—147. (in Chinese) doi: 10.3969/j.issn.1004-4574.2001.04.027
|
[10] |
李小军, 2006. 海域工程场地地震安全性评价的特殊问题. 震灾防御技术, 1(2): 97—104. doi: 10.3969/j.issn.1673-5722.2006.02.002Li X. J., 2006. Special problems on evaluation of seismic safety for offshore engineering site. Technology for Earthquake Disaster Prevention, 1(2): 97—104. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.02.002
|
[11] |
李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21—29.Li X. J., 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21—29. (in Chinese)
|
[12] |
李小军, 陈苏, 任治坤等, 2020. 海域地震区划关键技术研究项目及研究进展. 地震科学进展, 50(1): 2—19. doi: 10.3969/j.issn.2096-7780.2020.01.001Li X. J., Chen S., Ren Z. K., et al., 2020. Project plan and research progress on key technologies of seismic zoning in sea areas. Progress in Earthquake Sciences, 50(1): 2—19. (in Chinese) doi: 10.3969/j.issn.2096-7780.2020.01.001
|
[13] |
荣棉水, 李小军, 卢滔等, 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议. 地震学报, 35(2): 262—271. doi: 10.3969/j.issn.0253-3782.2013.02.012Rong M. S., Li X. J., Lu T., et al., 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers. Acta Seismologica Sinica, 35(2): 262—271. (in Chinese) doi: 10.3969/j.issn.0253-3782.2013.02.012
|
[14] |
荣棉水, 喻烟, 王继鑫, 2018. 基于强震观测的海域和陆域场地效应的对比研究. 建筑结构, 48(S2): 345—349.Rong M. S., Yu Y., Wang J. X., 2018. Comparative study on site-effects of sea and land area based on strong earthquake observation. Building Structure, 48(S2): 345—349. (in Chinese)
|
[15] |
时振梁, 2002. 中国地震区划工作回顾. 见: 新世纪地震工程与防震减灾: 庆贺胡聿贤院士八十寿辰. 地震出版社, 50—56.
|
[16] |
郑天愉, 姚振兴, 谢礼立, 1985. 海底强地面运动计算. 地震工程与工程振动, 5(3): 13—22.Zheng T. Y., Yao Z. X., Xie L. L., 1985. Strong motion of ocean bottom. Earthquake Engineering and Engineering Vibration, 5(3): 13—22. (in Chinese)
|
[17] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2006. GB 17741—2005 工程场地地震安全性评价. 北京: 中国标准出版社, 1—12.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2006. GB 17741—2005 Evaluation of seismic safety for engineering sites. Beijing: Standards Press of China, 1—12. (in Chinese)
|
[18] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社, 1—242.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2016. GB 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China, 1—242. (in Chinese)
|
[19] |
周越, 陈苏, 李小军, 2016. 基于小波方法的近海域地震动时频特性分析. 土木工程学报, 49(S1): 7—12.Zhou Y., Chen S., Li X. J., 2016. Wavelet-based time-frequency characteristic analysis on offshore ground motion. China Civil Engineering Journal, 49(S1): 7—12. (in Chinese)
|
[20] |
朱镜清, 1988. 地震作用下海水与海床土的耦合运动. 地震工程与工程振动, 8(2): 37—43.Zhu J. Q., 1988. Coupled motion between sea water and sea bed-soil under earthquake action. Earthquake Engineering and Engineering Vibration, 8(2): 37—43. (in Chinese)
|
[21] |
Atkinson G. M., Boore D. M., 2003. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4): 1703—1729. doi: 10.1785/0120020156
|
[22] |
Atkinson G. M., Macias M. A., 2009. Predicted ground motions for great interface earthquakes in the Cascadia Subduction Zone. Bulletin of the Seismological Society of America, 99(3): 1552—1578. doi: 10.1785/0120080147
|
[23] |
Diao H. Q., Hu J. J., Xie L. L., 2014. Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA. Earthquake Engineering and Engineering Vibration, 13(2): 181—194. doi: 10.1007/s11803-014-0222-4
|
[24] |
Fu L., Li X. J., 2016. The characteristics of high-frequency attenuation of shear waves in the Longmen Shan and adjacent regions. Bulletin of the Seismological Society of America, 106(5): 1979—1990. doi: 10.1785/0120160002
|
[25] |
Lin P. S., Lee C. T., 2008. Ground-motion attenuation relationships for Subduction-Zone earthquakes in northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1): 220—240. doi: 10.1785/0120060002
|
[26] |
Nagano M., Motosaka M., 1994.3-D wave propagation analysis of fluid-soil interaction system using hyperelements for moving loads. In: Proceedings of the 9th Japan Earthquake Engineering Symposium. Tokyo, 1291—1296.
|
[27] |
Nakamura T., Takenaka H., Okamoto T., et al., 2012. FDM simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay Earthquake: Effects of ocean-bottom topography and seawater layer. Bulletin of the Seismological Society of America, 102(6): 2420—2435. doi: 10.1785/0120110356
|
[28] |
Petersen M., Harmsen S., Mueller C., et al., 2007. Documentation for the Southeast Asia Seismic Hazard Maps. Administrative Report. Reston, Virginia: U. S. Geological Survey, 1—65.
|
[29] |
Zhao J. X., Zhang J. J., Asano A., et al., 2006. Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3): 898—913. doi: 10.1785/0120050122
|
[30] |
Zhao J. X., Jiang F., Shi P., et al., 2016. Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4): 1535—1551. doi: 10.1785/0120150056
|