• ISSN 1673-5722
  • CN 11-5429/P

基于混合机器学习模型的近场与远场长周期地震动判别方法研究

王博 李莉萍 张佳伟

王博,李莉萍,张佳伟,2025. 基于混合机器学习模型的近场与远场长周期地震动判别方法研究. 震灾防御技术,x(x):1−13. doi:10.11899/zzfy20250125. doi: 10.11899/zzfy20250125
引用本文: 王博,李莉萍,张佳伟,2025. 基于混合机器学习模型的近场与远场长周期地震动判别方法研究. 震灾防御技术,x(x):1−13. doi:10.11899/zzfy20250125. doi: 10.11899/zzfy20250125
Wang Bo, Li Liping, Zhang Jiawei. Research on Discrimination Methods of Near-field and Far-field Long-period Ground Motions Based on Hybrid Machine Learning Models[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250125
Citation: Wang Bo, Li Liping, Zhang Jiawei. Research on Discrimination Methods of Near-field and Far-field Long-period Ground Motions Based on Hybrid Machine Learning Models[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250125

基于混合机器学习模型的近场与远场长周期地震动判别方法研究

doi: 10.11899/zzfy20250125
基金项目: 国家自然科学基金(52478493、51978076、51708037)
详细信息
    作者简介:

    王博,男,生于1985年。教授,博士生导师。主要从事工程结构抗震研究。E-mail:chnwangbo@chd.edu.cn

  • 12 http://peer.berkeley.edu./

Research on Discrimination Methods of Near-field and Far-field Long-period Ground Motions Based on Hybrid Machine Learning Models

  • 摘要: 长周期地震动因具有丰富的低频成分而易使超高层建筑、大跨桥梁、大型生命线工程等长周期结构产生震害,根据形成机制与特征不同,可分为近场长周期地震动和远场长周期地震动两大类。目前对于长周期地震动的界定方法尚未有统一标准,现有方法多根据单一参数判定,无法表征长周期地震动的复杂特性,且缺少对不同类型长周期地震动的界定。鉴于此,本文从人工多角度提取特征和自动拾取时空联合特征两个角度,分别基于机器学习和深度学习搭建PCA-SVM模型和CNN-LSTM-Attention模型,实现了对近、远场长周期地震动的高效判别,在测试集上分别达到了96.57%和97.06%的准确率。结果表明,本文提出的两种分类模型对近、远场长周期地震动均有较好的判别效果,且相较于传统方法更具优越性,可为长周期地震动的识别与选取提供参考。
    1)  12 http://peer.berkeley.edu./
  • 图  1  地震动相关信息

    Figure  1.  Information of ground motion

    图  2  PCA-SVM地震动识别基本框架

    Figure  2.  Basic framework of PCA-SVM ground motion recognition

    图  3  线性相关性示意图

    Figure  3.  Schematic diagram of linear correlation

    图  4  特征相关性热力图

    Figure  4.  Heatmap of feature correlation

    图  5  累计解释方差

    Figure  5.  Cumulative explained variance

    图  6  解释方差比率

    Figure  6.  Explanation variance ratio

    图  7  特征重要性

    Figure  7.  Feature importance

    图  8  评价指标

    Figure  8.  Evaluation indicators

    图  9  ROC曲线及AUC值

    Figure  9.  ROC curve and AUC value

    图  10  准确率变化

    Figure  10.  Accuracy

    图  11  SVM三分类决策边界

    Figure  11.  SVM three-classification decision boundary

    图  12  不同特征输入组合下的混淆矩阵

    Figure  12.  Confusion matrix for different combinations of feature inputs

    图  13  CNN-LSTM-Attention地震动识别基本框架

    Figure  13.  Basic framework of CNN-LSTM-Attention ground motion recognition

    图  14  评价指标

    Figure  14.  Evaluation indicators

    图  15  准确率曲线

    Figure  15.  Accuracy curve

    图  16  ROC曲线及AUC值

    Figure  16.  Accuracy curve

    图  17  消融实验各模型在测试集上的混淆矩阵

    Figure  17.  Confusion matrix for each model of the ablation experiment on the test set

    图  18  加速度时程曲线和频谱特征

    Figure  18.  Acceleration time history curve and spectral characteristics

    表  1  特征参数及其定义

    Table  1.   Characteristic parameters and their definitions

    参数性质 特征参数 特征定义
    时域特征PGA地震动加速度时程中最大幅值的绝对值。
    PGV地震动速度时程中最大幅值的绝对值。
    PGV/PGA峰值速度PGV与峰值加速度PGA的比值。
    90%能量持时T90%地震动累积能量从5%达到95%所持续的时间。
    相对速度脉冲能量Erp脉冲时程能量与速度时程总能量的比值。
    频域特征Tavg加速度反应谱平均周期。
    TPA加速度反应谱最大幅值对应的频率。
    βlβ谱2~10 s谱值的加权平均值。
    fmax傅里叶幅值谱最大幅值对应的频率。
    Tmf傅里叶谱平均周期。
    fEmaxHilbert能量谱最大幅值对应的频率。
    TmEHilbert能量谱平均周期。
    一般特征震中距震中与观测点之间的地球球面距离。
    场地类型依据等效剪切波速VS30将场地划分为A、B、C、D、E。
    信号特征功率信号在单位时间内传递的能量。
    过零率信号在单位时间内跨越零的频率,体现地震动非平稳性。
    下载: 导出CSV

    表  2  网格搜索信息

    Table  2.   Grid search information

    核函数 linear核 rbf核 poly核 sigmoid核
    搜索空间 C: 0.01, 0.1, 1,
    10, 100,1000
    class_weight: balanced
    C: 0.01, 0.1, 1, 10, 100,1000
    gamma: 0.0001, 0.001,
    0.01, 0.1, 1, 10
    class_weight: balanced
    C: 0.01, 0.1, 1, 10, 100,1000
    gamma:0.0001, 0.001, 0.01, 0.1, 1, 10
    degree: 2, 3, 4
    coef0: -1, 0, 1
    class_weight: balanced
    C: 0.01, 0.1, 1, 10, 100,1000
    gamma: 0.0001, 0.001, 0.01, 0.1, 1, 10
    coef0: −1, 0, 1
    class_weight: balanced
    最佳组合 rbf核:C=100,gamma=0.01,class_weight=balanced
    下载: 导出CSV

    表  3  五折交叉验证结果

    Table  3.   Five-fold cross-validation results

    最佳参数组合1折2折3折4折5折均值标准差
    kernel=rbf核,
    C=100,gamma=0.01
    class_weight=balanced
    0.94510.94480.94510.95710.96320.95110.0086
    下载: 导出CSV

    表  4  不同特征输入组合下的模型评估指标

    Table  4.   Model evaluation metrics for different combinations of feature inputs

    特征参数组合精确率召回率FI分数准确率AUC值卡帕系数
    一般特征(2个)0.71190.70590.69660.70590.88450.5605
    信号特征(2个)0.74210.74510.74320.74510.92430.6134
    一般、信号特征(4个)0.82800.82350.82430.82350.95040.7344
    时域特征(5个)0.89110.88240.88390.88240.96970.8234
    频域特征(7个)0.86160.84310.84710.84310.95770.7652
    时域、频域特征(12个)0.95100.95100.95100.95100.99050.9259
    时、频域、一般特征(14个)0.96090.96080.96080.96080.99150.9407
    时、频域、信号特征(14个)0.94100.94120.94110.94120.99050.9110
    全部特征(16个)0.96600.96600.96600.96570.99240.9481
    下载: 导出CSV

    表  5  超参数优化结果

    Table  5.   Hyperparameter optimization results

    超参数卷积层1通道数卷积层2通道数LSTM隐藏单元数学习率测试集准确率
    搜索空间8/16/32/648/16/32/64128/256/512/102410−5 ~ 10−197%
    取值64642560.0001
    下载: 导出CSV

    表  6  五折交叉验证结果

    Table  6.   Five-fold cross-validation results

    折数训练准确率/%测试准确率/%训练损失值测试损失值F1分数卡帕系数
    199.142294.11760.02470.54510.94090.9112
    298.652090.68630.05160.44210.90650.8591
    398.284393.13730.04130.35650.93120.8962
    499.509894.11760.01490.28870.94090.9102
    599.509894.60780.01900.17230.94600.9187
    均值99.019693.33330.03030.36090.93310.8991
    标准差0.00540.01570.01560.14260.01580.0238
    下载: 导出CSV

    表  7  消融实验评估结果

    Table  7.   Evaluation results of ablation study

    基准模型精确率召回率F1分数准确率AUC值卡帕系数
    CNN0.91520.91180.91180.91180.93440.8651
    CNN-LSTM0.94190.94120.94050.94120.98620.9103
    CNN-LSTM-Attention0.97050.97060.97040.97060.99280.9553
    下载: 导出CSV

    表  8  本文模型与传统方法识别结果

    Table  8.   Identification results of this paper's model and traditional methods

    方法SVM-PCA法CNN-LSTM-Attention法PGV/PGA法βl值法LPGI法
    准确率96.49%95.61%83.33%81.58%77.19%
    下载: 导出CSV

    表  9  示例地震动相关信息

    Table  9.   Relevant information on example ground motion

    地震动记录 震级 震中距/km 场地类型 Tmf/s Tavg/s Tp/s PGV/PGA βl LPGI
    H-EMO270 6.53 0.07 D 1.88 1.83 3.08 0.34 0.24 9.99×10−1
    JEN292 6.69 5.43 D 1.01 1.06 1.85 0.16 0.09 1.81×10−8
    KAU086-EW 7.62 128.8 D 1.52 1.79 0.26 0.41 5.40×10−6
    下载: 导出CSV
  • 党育, 李连峰, 2018. 长周期地震动的界定及对应场地发生概率. 兰州理工大学学报, 44(6): 112−117.

    Dang Y., Li L. F., 2018. Definition of long-period ground motion and its occurrence probability on variously classified site. Journal of Lanzhou University of Technology, 44(6): 112−117. (in Chinese)
    丁昊青, 2017. 基于机器学习算法的脉冲型地震动识别. 哈尔滨: 哈尔滨工业大学.

    Ding H. Q., 2017. Identification of pulselike ground motion based on machine learning algorithm. Harbin: Harbin Institute of Technology. (in Chinese)
    窦世昌, 2020. 长周期地震动作用下高层结构地震反应及易损性分析. 哈尔滨: 哈尔滨工业大学.

    Dou S. C., 2020. Seismic response and fragility analysis of high-rise structures under long-period ground motion. Harbin: Harbin Institute of Technology. (in Chinese)
    方登甲, 2022. 长周期地震下基于性能的高层斜交网格结构易损性评估. 成都: 西南交通大学.

    Fang D. J., 2022. Performance-based seismic fragility assessments of high-rise diagrid structures under long-period ground motion inputs. Chengdu: Southwest Jiaotong University. (in Chinese)
    李梅, 宁德军, 郭佳程, 2019. 基于注意力机制的CNN-LSTM模型及其应用. 计算机工程与应用, 55(13): 20−27.

    Li M., Ning D. J., Guo J. C., 2019. Attention mechanism-based CNN-LSTM model and its application. Computer Engineering and Applications, 55(13): 20−27. (in Chinese)
    李雪红, 王文科, 吴迪等, 2014. 长周期地震动的特性分析及界定方法研究. 振动工程学报, 27(5): 685−692.

    Li X. H., Wang W. K., Wu D., et al., 2014. The bounded method and characteristics analysis for long-period ground motions. Journal of Vibration Engineering, 27(5): 685−692. (in Chinese)
    李英民, 赵晨晓, 谭潜, 2018. 基于HHT地震动分量分离的长周期地震动界定方法. 振动与冲击, 37(7): 164−171, 219.

    Li Y. M., Zhao C. X., Tan Q., 2018. Classification method for long period ground motions based on component decomposition with HHT. Journal of Vibration and Shock, 37(7): 164−171,219. (in Chinese)
    陆继翔, 张琪培, 杨志宏等, 2019. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法. 电力系统自动化, 43(8): 131−137.

    Lu J. X., Zhang Q. P., Yang Z. H., et al., 2019. Short-term load forecasting method based on CNN-LSTM hybrid neural network model. Automation of Electric Power Systems, 43(8): 131−137. (in Chinese)
    牛志辉, 陈波, 卜春尧, 2021. 基于卷积神经网络的速度大脉冲识别方法研究. 震灾防御技术, 16(3): 485−491.

    Niu Z. H., Chen B., Bu C. Y., 2021. Identification of pulse-like strong ground motions based on convolution neural network. Technology for Earthquake Disaster Prevention, 16(3): 485−491. (in Chinese)
    苏闻浩, 刘启方, 2024. 基于深度神经网络的地表地震动幅值预测研究. 震灾防御技术, 19(2): 387−396.

    Su W. H., Liu Q. F., 2024. Study on the prediction of ground motion amplitude based on deep neural network. Technology for Earthquake Disaster Prevention, 19(2): 387−396. (in Chinese)
    王博, 2013. 多类型长周期地震动作用下高层结构的动力行为与设计方法研究. 西安: 西安建筑科技大学. Wang B., 2013. Study on dynamic behavior and design method of high-rise structures under multi-type long-period ground motions. Xi’an: Xi’an University of Architecture and Technology. (in Chinese).
    王博, 刘伯权, 吴涛等, 2018. 远场长周期地震动频谱特征周期与强度指标研究. 振动与冲击, 37(7): 211−219.

    Wang B., Liu B. Q., Wu T., et al., 2018. Characteristic periods and intensity indexes for far-field long-period ground motion frequency spectra. Journal of Vibration and Shock, 37(7): 211−219. (in Chinese)
    张宸嘉, 朱磊, 俞璐, 2021. 卷积神经网络中的注意力机制综述. 计算机工程与应用, 57(20): 64−72.

    Zhang C. J., Zhu L., Yu L., 2021. Review of attention mechanism in convolutional neural networks. Computer Engineering and Applications, 57(20): 64−72. (in Chinese)
    张亮泉, 于建杰, 2019. 近、远场长周期地震动界定及分类研究. 自然灾害学报, 28(2): 29−36.

    Zhang L. Q., Yu J. J., 2019. Definition and classification of near and far field long period ground motions. Journal of Natural Disasters, 28(2): 29−36. (in Chinese)
    Bharadiya J. P., 2023. Convolutional neural networks for image classification. International Journal of Innovative Science and Research Technology, 8(5): 673−677.
    Boser B. E. , Guyon I. M. , Vapnik V. N. , 1992. A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM, 144−152.
    Cortes C., Vapnik V., 1995. Support-vector networks. Machine Learning, 20(3): 273−297. doi: 10.1023/A:1022627411411
    Habib A., Youssefi I., Kunt M. M., 2022. Identification of pulse-like ground motions using artificial neural network. Earthquake Engineering and Engineering Vibration, 21(4): 899−912. doi: 10.1007/s11803-022-2127-y
    Hochreiter S., Schmidhuber J., 1997. Long short-term memory. Neural Computation, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
    Jolliffe I. T. , Cadima J. , 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065): 20150202.
    Krizhevsky A., Sutskever I., Hinton G. E., 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84−90. doi: 10.1145/3065386
    Liao W. I., Loh C. H., Wan S., 2001. Earthquake responses of RC moment frames subjected to near-fault ground motions. The Structural Design of Tall Buildings, 10(3): 219−229. doi: 10.1002/tal.178
    Wani F. M., Vemuri J., 2024. Shapelet-informed machine learning classifiers: a path towards precise identification of pulse-like ground motions. Journal of Earth System Science, 133(2): 96. doi: 10.1007/s12040-024-02314-2
  • 加载中
图(18) / 表(9)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  8
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-29
  • 录用日期:  2025-09-04
  • 修回日期:  2025-08-28
  • 网络出版日期:  2025-09-24

目录

    /

    返回文章
    返回