Generative Neural Network-Based Strong Ground Motion Simulation
-
摘要: 基于简单线性关系的分析方法在表征地震动影响因素时,往往导致预测结果与实测数据存在显著偏差。为克服这一局限性,本文基于生成式神经网络无需依赖先验地震学知识即可自动提取特征并生成完整地震动时程的优势,系统评估了三种典型生成式神经网络模型(变分自编码器VAE、生成对抗网络GAN和去噪扩散概率模型DDPM)在地震动模拟中的性能表现。研究采用PEER数据库中的1, 451条水平向地震动记录(源自23次独立地震事件)作为训练数据集,对三种模型进行统一训练和对比分析。模拟结果时域和频域的综合评估结果表明:三种模型中,DDPM展现出最优的模拟性能,GAN次之,而VAE表现相对欠佳。值得注意的是,GAN模拟结果呈现出显著的长周期成分增强特征,而VAE则表现出明显的持时延长现象。通过与四种经典地震动预测方程的对比研究发现,DDPM模拟结果与GMPEs预测值具有较好的一致性,但存在轻微的系统性低估趋势。
-
关键词:
Abstract: Analytical methods based on simple linear relationships often lead to significant deviations between predicted results and measured data when describing the influencing factors of ground motions. To overcome this limitation, this study leverages the advantage of generative neural networks—which can automatically extract features and generate complete seismic motion time histories without relying on prior seismological knowledge—to systematically evaluate the performance of three typical generative neural network models (Variational Autoencoder VAE, Generative Adversarial Network GAN, and Denoising Diffusion Probabilistic Model DDPM) in ground motion simulation. The research employs 1, 451 horizontal ground motion records from 23 independent seismic events in the PEER database as the training dataset for uniform training and comparative analysis of the three models. Comprehensive evaluation of the simulation results in both time and frequency domains demonstrates that among the three models, DDPM exhibits the best simulation performance, followed by GAN, while VAE shows relatively inferior results. Notably, GAN simulation results display a significant enhancement of long-period components, whereas VAE exhibits a pronounced prolongation of duration. Comparative studies with four classical Ground Motion Prediction Equations (GMPEs) reveal that DDPM simulation results show good agreement with GMPE predictions, albeit with a slight systematic underestimation trend. -
点击查看大图
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 0
下载: