• ISSN 1673-5722
  • CN 11-5429/P

基于生成式神经网络的强地震动模拟

黄滟雯 孙晓丹 杨成 栗怀广 赵灿晖 徐威

黄滟雯,孙晓丹,杨成,栗怀广,赵灿晖,徐威,2025. 基于生成式神经网络的强地震动模拟. 震灾防御技术,20(4):1−10. doi:10.11899/zzfy20250124. doi: 10.11899/zzfy20250124
引用本文: 黄滟雯,孙晓丹,杨成,栗怀广,赵灿晖,徐威,2025. 基于生成式神经网络的强地震动模拟. 震灾防御技术,20(4):1−10. doi:10.11899/zzfy20250124. doi: 10.11899/zzfy20250124
Huang Yanwen, Sun Xiaodan, Yang Cheng, Li Huaiguang, Zhao Canhui, Xu Wei. Generative Neural Network-Based Strong Ground Motion Simulation[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250124
Citation: Huang Yanwen, Sun Xiaodan, Yang Cheng, Li Huaiguang, Zhao Canhui, Xu Wei. Generative Neural Network-Based Strong Ground Motion Simulation[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250124

基于生成式神经网络的强地震动模拟

doi: 10.11899/zzfy20250124
基金项目: 国家自然科学基金地区联合基金(U21A20154);四川省交通运输科技项目(2018-ZL-01)
详细信息
    作者简介:

    黄滟雯,女,生于1993年。博士。主要从事结构抗震与减灾等研究。E-mail:ywhuang@my.swjtu.edu.cn

    通讯作者:

    孙晓丹,女,生于1980年。博士。主要从事工程地震学研究。E-mail:sunxd@swjtu.edu.cn

Generative Neural Network-Based Strong Ground Motion Simulation

  • 摘要: 基于简单线性关系的分析方法在表征地震动影响因素时,往往导致预测结果与实测数据存在显著偏差。为克服这一局限性,本文基于生成式神经网络无需依赖先验地震学知识即可自动提取特征并生成完整地震动时程的优势,系统评估了3种典型生成式神经网络模型(变分自编码器VAE、生成对抗网络GAN和去噪扩散概率模型DDPM)在地震动模拟中的性能表现。研究采用PEER数据库中的1 451条水平向地震动记录(源自23次独立地震事件)作为训练数据集,对3种模型进行统一训练和对比分析。模拟结果时域和频域的综合评估结果表明,3种模型中DDPM展现出最优的模拟性能,GAN次之,而VAE表现相对欠佳。值得注意的是,GAN模拟结果呈现出显著的长周期成分增强特征,而VAE则表现出明显的持时延长现象。通过与4种经典地震动预测方程的对比研究发现,DDPM模拟结果与GMPEs预测值具有较好的一致性,但存在轻微的系统性低估趋势。
  • 图  1  训练数据库中地震动记录的分布情况

    Figure  1.  Distribution of the records in the training database

    图  2  本文使用的VAE、GAN 和DDPM网络架构

    Figure  2.  The network architectures of VAE, GAN, and DDPM employed in this study

    图  3  地震记录与VAE、GAN和DDPM模拟地震动时域对比

    Figure  3.  Seismic record comparison in time domain simulation via VAE, GAN, and DDPM

    图  4  平均时频功率谱对比

    Figure  4.  Comparison of average time-frequency power spectrum

    图  5  反应谱对比

    Figure  5.  Response spectrum comparison

    图  6  DDPM与四种GMPEs预测结果反应谱对比

    Figure  6.  Comparison of response spectra between DDPM and four GMPEs

    表  1  选定地震记录的信息

    Table  1.   Selected seismic record information

    记录编号 地震名称 站台名称 MW VS30 /(m·s−1) 断层机制
    记录1 1980年意大利地震 Tolmezzo 6.50 505.23 逆断层
    记录2 1989年洛马普列塔地震 APEEL 10-Skyline 6.93 391.91 逆断层
    记录3 1994年北岭地震 Riverside Airport 6.69 389.95 逆断层
    下载: 导出CSV
  • 李平, 范钟元, 周楷等, 2024. 基于强震记录的土层结构放大作用研究−−以SMASS台阵为例. 震灾防御技术, 19(4): 661−674.

    Li P., Fan Z. Y., Zhou K., et al., 2024. Study of soil structure amplification based on strong earthquake records−−a case study of SMASS array. Technology for Earthquake Disaster Prevention, 19(4): 661−674. (in Chinese)
    孙晓丹, 2010. 强地震动场估计中若干问题的研究. 哈尔滨: 哈尔滨工业大学.

    Sun X. D., 2010. Some issues on estimation of strong ground motion field. Harbin: Harbin Institute of Technology. (in Chinese)
    张博涵, 王宏伟, 任叶飞等, 2025. 地震动预测模型评价研究−−以2023年2月6日土耳其地震为例. 震灾防御技术, 20(1): 77−85.

    Zhang B. H., Wang H. W., Ren Y. F., et al., 2025. Evaluation of ground motion model: a case study of the turkey earthquake on February 6, 2023. Technology for Earthquake Disaster Prevention, 20(1): 77−85. (in Chinese)
    Abrahamson N., Silva W., 2008. Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra, 24(1): 67−97. doi: 10.1193/1.2924360
    Bengio Y. , Thibodeau-Laufer É. , Alain G. , et al. , 2014. deep generative stochastic networks trainable by backprop. In: Proceedings of the 31st International Conference on International Conference on Machine Learning. Beijing: PMLR, 226−234.
    Boore D. M., Joyner W. B., Fumal T. E., 1997. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismological Research Letters, 68(1): 128−153. doi: 10.1785/gssrl.68.1.128
    Boore D. M., Atkinson G. M., 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1): 99−138. doi: 10.1193/1.2830434
    Campbell K. W., Bozorgnia Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1): 139−171. doi: 10.1193/1.2857546
    Chiou B. J., Youngs R. R., 2008. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24(1): 173−215. doi: 10.1193/1.2894832
    Datta A., Wu D. J., Zhu W. Q., et al., 2022. DeepShake: shaking intensity prediction using deep spatiotemporal RNNs for earthquake early warning. Seismological Research Letters, 93(3): 1636−1649. doi: 10.1785/0220210141
    Derakhshani A., Foruzan A. H., 2019. Predicting the principal strong ground motion parameters: a deep learning approach. Applied Soft Computing, 80: 192−201. doi: 10.1016/j.asoc.2019.03.029
    Dhariwal P., Nichol A., 2021. Diffusion models beat GANs on image synthesis. Advances in neural information processing systems, 34: 8780−8794.
    Gemici M. C. , Rezende D. , Mohamed S. , 2016. Normalizing flows on Riemannian manifolds. (2016-11-09)[2025-09-20]. https://arxiv.org/abs/1611.02304.
    Goodfellow I. J. , Pouget-Abadie J. , Mirza M. , et al. , 2014. Generative adversarial nets. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press.
    Heusel M. , Ramsauer H. , Unterthiner T. , et al. , 2017. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc.
    Ho J. , Jain A. , Abbeel P. , 2020. Denoising diffusion probabilistic models. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc. , 574.
    Ho J., Saharia C., Chan W., et al., 2022. Cascaded diffusion models for high fidelity image generation. The Journal of Machine Learning Research, 23(1): 47.
    Jiao P. C., Alavi A. H., 2020. Artificial intelligence in seismology: advent, performance and future trends. Geoscience Frontiers, 11(3): 739−744. doi: 10.1016/j.gsf.2019.10.004
    Khosravikia F., Clayton P., Nagy Z., 2019. Artificial neural network‐based framework for developing ground‐motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas. Seismological Research Letters, 90(2A): 604−613. doi: 10.1785/0220180218
    Kingma D P, Welling M. , 2018. Auto-encoding variational Bayes. (2018-06-18)[2025-09-20]. https://www.ee.bgu.ac.il/~rrtammy/DNN/StudentPresentations/2018/AUTOEN~2.PDF.
    Liu P., Archuleta R. J., Hartzell S. H., 2006. Prediction of broadband ground-motion time histories: hybrid low/high-frequency method with correlated random source parameters. Bulletin of the Seismological Society of America, 96(6): 2118−2130. doi: 10.1785/0120060036
    Miyato T. , Kataoka T. , Koyama M. , et al. , 2018. Spectral normalization for generative adversarial networks. In: Proceedings of the 6th International Conference on Learning Representations. Vancouver: OpenReview. net.
    Nichol A. Q. , Dhariwal P. , Ramesh A. , et al. , 2022. GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. In: Proceedings of the 39th International Conference on Machine Learning. Baltimore: PMLR.
    Sadigh K., Chang C. Y., Egan J. A., et al., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismological Research Letters, 68(1): 180−189. doi: 10.1785/gssrl.68.1.180
    Salimans T. , Goodfellow I. , Zaremba W. , et al. , 2016. Improved techniques for training GANs. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates Inc.
    Song Y. , Ermon S. , 2019. Generative modeling by estimating gradients of the data distribution. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc.
    Svozil D., Kvasnicka V., Pospichal J., 1997. Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1): 43−62. doi: 10.1016/S0169-7439(97)00061-0
    Teräsvirta T., 1994. Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89(425): 208−218.
    van den Oord A. , Kalchbrenner N. , Vinyals O. , et al. , 2016a. Conditional image generation with PixelCNN decoders. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates Inc.
    Van Den Oord A. , Kalchbrenner N. , Kavukcuoglu K. , 2016b. Pixel recurrent neural networks. In: Proceedings of the 3rd International Conference on Machine Learning. New York: PMLR, 1747−1756.
    Villani C. , 2009. The wasserstein distances. In: Villani C. , ed. , Optimal Transport: Old and New. Berlin: Heidelberg: Springer, 93−111.
    Wan S., Yen J. Y., 2007. The study of base isolation on the precise machinery system for regional ground motion records with modified back propagation neural network approach. Structural Control and Health Monitoring, 14(5): 759−776. doi: 10.1002/stc.177
    Wang T. T. , Zhang Z. P. , Li Y. Z. , 2019. EarthquakeGen: earthquake generator using generative adversarial networks. In: Proceedings of the SEG Technical Program Expanded Abstracts. San Antonio: SEG, 2674−2678.
    Zhang Y. Q. , Peng B. , Zhou X. Y. , et al. , 2019. A deep convolutional neural network for topology optimization with strong generalization ability. (2019-01-23)[2025-09-20]. https://arxiv.org/abs/1901.07761
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-20
  • 录用日期:  2025-09-22
  • 修回日期:  2025-08-28
  • 网络出版日期:  2025-10-20

目录

    /

    返回文章
    返回