• ISSN 1673-5722
  • CN 11-5429/P

基于自适应神经模糊推理方法的竖向地震动预测与检验

游姗 孟庆筱 张严方 景鹏旭

游姗,孟庆筱,张严方,景鹏旭,2025. 基于自适应神经模糊推理方法的竖向地震动预测与检验−以2022年青海门源MW6.7地震为例. 震灾防御技术,x(x):1−15. doi:10.11899/zzfy20250120. doi: 10.11899/zzfy20250120
引用本文: 游姗,孟庆筱,张严方,景鹏旭,2025. 基于自适应神经模糊推理方法的竖向地震动预测与检验−以2022年青海门源MW6.7地震为例. 震灾防御技术,x(x):1−15. doi:10.11899/zzfy20250120. doi: 10.11899/zzfy20250120
You Shan, Meng Qingxiao, Zhang Yanfang, Jing Pengxu. Vertical Ground Motion Prediction and Validation Using Adaptive Neuro-Fuzzy Inference Method[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250120
Citation: You Shan, Meng Qingxiao, Zhang Yanfang, Jing Pengxu. Vertical Ground Motion Prediction and Validation Using Adaptive Neuro-Fuzzy Inference Method[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250120

基于自适应神经模糊推理方法的竖向地震动预测与检验以2022年青海门源MW6.7地震为例

doi: 10.11899/zzfy20250120
基金项目: 基金项目2024年地震行业标准制修订项目计划(2024 DBJCYB13);中央级公益性科研院所基本科研业务费专项(DQJB24 Z11);地震信息青年重点项目(CEAITNS202427);地震监测预警业务骨干专项任务(CEA-JCYJ-202501083);武昌工学院大数据管理与数字商贸学科群项目(2025 JGXK03);中国地震局第一监测中心主任基金(FMC2024004)
详细信息
    作者简介:

    游姗,女,生于1986年。副教授。主要从事岩土地震工程方面的研究工作。Email:286786312@qq.com

    通讯作者:

    孟庆筱,男,生于1986年。高级工程师。主要从事地震工程学、地震标准化与监测站网运维方面的研究工作。Email:mengqingxiao09@mails.ucas.ac.cn

Vertical Ground Motion Prediction and Validation Using Adaptive Neuro-Fuzzy Inference MethodA Case Study of the 2022 MW6.7 Menyuan Earthquake in Qinghai, China

  • 摘要: 为解决竖向地震动预测不确定性较大的问题,利用NGA-West强地震动数据库,基于自适应神经模糊推理方法(ANFIS)建立竖向地震动强度预测模型,进而计算2022年1月8日青海门源MW6.7地震的竖向地震动峰值加速度分布。在利用国家地震烈度速报与预警工程观测数据开展信度检验的基础上,探讨近场强地震动的方向效应、场地放大效应及其成因机理。研究结果表明:(1)基于ANFIS方法的竖向地震动强度预测模型在门源MW6.7地震竖向PGA预测过程中取得了较好的预测结果,其预测值与观测值相关系数R约为0.809,均方根误差ERMS约为0.046,说明本文预测模型具有较好的可靠性,同时检验了其在我国中强破坏性地震预测中的适用性。(2)门源MW6.7地震的竖向PGA预测值等值线整体上呈椭圆状,其长轴与发震断层走向具有较好的一致性,震中附近竖向PGA极大值约为376.3 Gal。竖向PGA在随断层距增大而不断衰减的同时,呈现出较为显著的方向性效应以及一定程度上的近场大震饱和效应。(3)竖向地震动峰值加速度的场地放大效应相对弱于水平向地震动,随着$ {{V}}_{{S30}} $的不断降低,竖向PGA相对于基岩场地的PGA最大放大倍数约为1.14~1.27;大震条件(MW=7.0)下软土场地($ {{V}}_{{S30}} $=100 m/s)处放大系数约为0.79,呈现出一定的软土减震效应。
  • 图  1  自适应神经模糊推理系统结构

    Figure  1.  Structure of adaptive neuro fuzzy inference system

    图  2  AS08数据集的矩震级MW和断层距Rrup

    Figure  2.  Magnitude MW and fault distance Rrup of AS08 dataset

    图  3  竖向地震动预测流程

    Figure  3.  Modeling process of vertical ground motion estimation

    图  4  ANFIS系统学习过程的收敛

    Figure  4.  Convergence of ANFIS system learning process

    图  5  训练集与测试集下竖向PGA的预测值和观测值

    Figure  5.  Predicted and observed values of vertical PGA under training and test sets

    图  6  平均相对误差EMAP随断层距的变化情况

    Figure  6.  Variation of EMAP with fault distance

    图  7  平均相对误差EMAPVS30的变化情况

    Figure  7.  Variation of EMAP with VS30

    图  8  基岩场地条件下的竖向PGA衰减

    Figure  8.  PGA attenuation of vertical ground motion under the condition of Bedrock

    图  9  Rrup=15 km处竖向PGA预测值的场地放大效应

    Figure  9.  Site amplification effect of vertical PGA predictions at Rrup=15 km

    图  10  门源MW6.7地震震源机制解、研究区活动断裂带及预警工程台站

    Figure  10.  Solution of the earthquake source mechanism of Menyuan MW6.7 earthquake,active rupture zones in the study area,and early warning engineering stations

    图  11  门源MW6.7地震发震断层破裂面地表投影与区域地表剪切波速度VS30的空间分布

    Figure  11.  Surface projection of the rupture fault of the Mengyuan earthquake and spatial distribution of the regional surface shear wave velocity VS30

    图  12  门源MW6.7地震竖向PGA预测值及剖面

    Figure  12.  Vertical PGA distribution and profile for the Mengyuan MW6.7 earthquake

    图  13  门源MW6.7地震竖向PGA观测值及其分布

    Figure  13.  Observation of vertical PGA for Mengyuan MW6.7 earthquake

    图  14  门源地震事件竖向PGA的观测值与预测值

    Figure  14.  Observed and predicted vertical peak ground shaking acceleration PGA in the Mengyuan seismic event

    图  15  相对误差随断层距Rrup的变化情况

    Figure  15.  Variation of relative error with fault distance from Rrup

    图  16  OAOB剖面上的竖向地震动PGA预测结果

    Figure  16.  PGA prediction of vertical ground shaking on OA and OB profiles

    图  17  OAOA’剖面上的竖向地震动PGA预测结果

    Figure  17.  PGA prediction of vertical ground shaking on OA and OA' profiles

    表  1  AS08数据集的总体情况

    Table  1.   Overview of AS08 dataset

    参数单位最大值最小值平均值标准差
    MW7.94.56.20.5
    VS30$ \text{m/s} $1820210345192
    $ {\text{R}}_{\text{rup}} $$ \text{km} $199.80.268.43.7
    $ \text{PGA} $$ \text{g} $1.6000.040.09
    下载: 导出CSV

    表  2  ANFIS竖向地震动强度预测模型的建模参数

    Table  2.   Modeling parameters of the ANFIS vertical ground motion intensity prediction model

    隶属函数$ {\text{M}}_{\text{W}} $$ {R}_{\text{rup}} $VS30
    abcabcabc
    10.31901.83660.05850.32981.92780.24290.00191.89110.0027
    20.37671.92840.32020.35491.91720.47210.05461.84500.6845
    30.14091.94661.11220.34151.83670.80770.35251.98230.8660
    下载: 导出CSV

    表  3  ANFIS竖向地震动预测模型的误差分析

    Table  3.   Error analysis of ANFIS vertical ground motion prediction model

    误差指标训练集测试集2022年门源MW6.7地震
    R0.8320.8180.809
    EMA0.0130.0240.038
    EMAP0.1330.1560.168
    ERMS0.0210.0420.046
    下载: 导出CSV

    表  4  不同机器学习预测模型的误差对比

    Table  4.   Error comparison of different machine learning prediction models

    指标ANFISANN-SAGP-OLS
    R0.8180.8550.811
    EMA0.0240.4600.488
    下载: 导出CSV

    表  5  2022年门源MW6.7地震竖向地震动预测的设定条件

    Table  5.   Setting conditions for vertical ground shaking prediction of the 2022 Mengyuan MW6.7 earthquake

    发震日期地震事件震级MW震中位置发震断层发震断层走向震源深度/km
    2022-01-08门源地震6.737.77 °N,101.26 °E托莱山断裂NWW-SEE10
    下载: 导出CSV
  • 白仲航, 项钲, 谭昭芸等, 2024. 自适应神经模糊推理系统优化的快速上肢评估方法. 计算机集成制造系统, 30(5): 1643−1656. doi: 10.13196/j.cims.2023.0277

    Bai Z. H., Xiang Z., Tan Z. Y., et al., 2024. Rapid upper limb assessment method based on adaptive neuro fuzzy inference system optimization. Computer Integrated Manufacturng Systems, 30(5): 1643−1656. (in Chinese) doi: 10.13196/j.cims.2023.0277
    陈凯, 潘华, 2025. 基于机器学习的区域地震动模拟−以2022年泸定MS6.8地震为例. 地震学报, 47(2): 242−253.

    Chen K., Pan H., 2025. Machine learning-based regional ground seismic motion simulation: a case study of the MS6.8 Luding earthquake in 2022. Acta Seismologica Sinica, 47(2): 242−253. (in Chinese)
    陈琨, 王安志, 2024. 卷积神经网络的正则化方法综述. 计算机应用研究, 41(4): 961−969. doi: 10.19734/j.issn.1001-3695.2023.06.0347

    Chen K., Wang A. Z., 2024. Survey on regularization methods for convolutional neural network. Application Research of Computers, 41(4): 961−969. (in Chinese) doi: 10.19734/j.issn.1001-3695.2023.06.0347
    邓伟伟, 段朝阳, 闫亮, 2021. 基于自适应神经模糊推理系统的导弹直/气复合控制系统设计. 导航定位与授时, 8(5): 54−60. doi: 10.19306/j.cnki.2095-8110.2021.05.008

    Deng W. W., Duan C. Y., Yan L., 2021. Design of missile direct/air compound control system based on adaptive neuro-fuzzy inference system. Navigation Positioning and Timing, 8(5): 54−60. (in Chinese) doi: 10.19306/j.cnki.2095-8110.2021.05.008
    管仲国, 黄勇, 张昊宇等, 2021. 青海玛多7.4级地震桥梁工程震害特性分析. 世界地震工程, 37(3): 38−45. doi: 10.3969/j.issn.1007-6069.2021.03.005

    Guan Z. G., Huang Y., Zhang H. Y., et al., 2021. Damage characteristics and analysis of bridge engineering in M7.4 Qinghai Maduo earthquake. World Earthquake Engineering, 37(3): 38−45. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.03.005
    韩建平, 周伟, 2012. 汶川地震竖向地震动特征初步分析. 工程力学, 29(12): 211−219.

    Han J. P, Zhou W., 2012. Preliminary investigation on characteristics of vertical Ground motion during Wenchuan earthquake. Engineering Mechanics, 29(12): 211−219. (in Chinese)
    韩立波, 2022. 2022年青海门源MS6.9地震震源机制解. 地震科学进展, 52(2): 49−54. doi: 10.11939/jass.20220008

    Han L. B., 2022. Focal mechanism of 2022 Menyuan MS6.9 earthquake in Qinghai Province. Progress in Earthquake Sciences, 52(2): 49−54. (in Chinese) doi: 10.11939/jass.20220008
    洪华嫦, 陈敏杰, 康家馨等, 2023. 基于自适应神经模糊推理系统和简单水质指标预测供水系统三卤甲烷的浓度. 环境科学学报, 43(6): 290−299. doi: 10.13671/j.hjkxxb.2023.0069

    Hong H. C., Chen M. J., Kang J. X., et al., 2023. Prediction of trihalomethane levels in tap water based on adaptive network-based fuzzy inference system and simple water quality parameters. Acta Scientiae Circumstantiae, 43(6): 290−299. (in Chinese) doi: 10.13671/j.hjkxxb.2023.0069
    胡进军, 谢礼立, 2011. 地震破裂的方向性效应相关概念综述. 地震工程与工程振动, 31(4): 1−8. doi: 10.13197/j.eeev.2011.04.001

    Hu J. J., Xie L. L., 2011. Review of rupture directivity related concepts in seismology. Journal of Earthquake Engineering and Engineering Vibration, 31(4): 1−8. (in Chinese) doi: 10.13197/j.eeev.2011.04.001
    胡进军, 张辉, 靳超越等, 2021. 基于PCA及PSO智能算法的地震动合成方法−−以中国西部中强地震为例. 工程力学, 38(3): 159−168.

    Hu J. J., Zhang H., Jin C. Y, et al., 2021. A method to simulate ground motion based on PCA and PSO intelligent algorithms−a case study of moderate magnitude earthquakes in western China. Engineering Mechanics, 38(3): 159−168. (in Chinese)
    靳超越, 胡进军, 胡磊等, 2021. 基于机器学习的地震动特征提取与模拟−−以2021年云南漾濞6.4级地震为例. 世界地震工程, 37(4): 73−80.

    Jin C. Y., Hu J. J., Hu L. et al., 2021. Machine learning-based seismic feature extraction and simulation−−a case study of the 2021 Yangbi M6.4 earthquake. World Earthquake Engineering, 37(4): 73−80. (in Chinese)
    刘胜兵, 梅浩华, 黄依莹等, 2024. 玄武岩-聚丙烯混杂纤维轻骨料混凝土强度研究. 武汉大学学报(工学版), 57(12): 1725−1732. doi: 10.14188/j.1671-8844.2024-12-007

    Liu S. B., Mei H. H., Huang Y. Y., et al., 2024. Strength study of basalt-polypropylene hybrid fiber lightweight aggregate concrete. Engineering Journal of Wuhan University, 57(12): 1725−1732. (in Chinese) doi: 10.14188/j.1671-8844.2024-12-007
    卢滔, 薄景山, 李巨文等, 2009. 汶川大地震汉源县城建筑物震害调查. 地震工程与工程振动, 29(6): 88−95.

    Lu T., Bo J. S., Li J. W. et al., 2009. Damage to buildings in Hanyuan county town during 2008 MS8.0 Wenchuan earthquake. Journal of Earthquake Engineering and Engineering Vibration, 29(6): 88−95. (in Chinese)
    吕红山, 赵凤新, 2007. 适用于中国场地分类的地震动反应谱放大系数. 地震学报, 29(1): 67−76. doi: 10.3321/j.issn:0253-3782.2007.01.008

    Lv H. S., Zhao F. X., 2007. Site coefficients suitable to China site category. Acta Seismologica Sinica, 29(1): 67−76. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.01.008
    潘章容, 周扬, 苗在鹏等, 2023. 2022年1月8日青海门源6.9级地震仪器烈度与宏观烈度对比分析. 高原地震, 35(3): 8−15. doi: 10.3969/j.issn.1005-586X.2023.03.002

    Pang Z. R., Zhou Y., Miao Z. P., et al., 2023. Comparative analysis on instrument intensaity and macroscopic survey intensity of the Menyuan M6.9 earthquake on January, 8, 2022. Plateau Earthquake Research, 35(3): 8−15. (in Chinese) doi: 10.3969/j.issn.1005-586X.2023.03.002
    彭朝勇, 程振鹏, 郑钰等, 2024. 考虑P波预警参数的震源破裂特征实时持续估测方法. 地球科学, 49(2): 391−402. doi: 10.3799/dqkx.2023.167

    Peng C. Y., Cheng Z. P., Zheng Y., et al., 2024. Real-time continuous estimation of Seismic source rupture characteristics considering P-wave early warning parameters. Earth Science, 49(2): 391−402. (in Chinese) doi: 10.3799/dqkx.2023.167
    齐娟, 罗开海, 杨小卫, 2014. 竖向地震动特性的统计分析. 地震工程与工程振动, 34(S1): 253−260. doi: 10.13197/j.eeev.2014.S0.253.qij.039

    Qi J., Luo K. H., Yang X. W., 2014. Statistical analysis on characteristics of vertical ground motions. Earthquake Engineering and Engineering Dynamics, 34(S1): 253−260. (in Chinese) doi: 10.13197/j.eeev.2014.S0.253.qij.039
    史大成, 温瑞智, 杜春清, 2012. 区域性场地VS30及峰值加速度放大系数估算方法. 地震工程与工程振动, 32(4): 40−46. doi: 10.13197/j.eeev.2012.04.004

    Shi D. C., Wen R. Z., Du C. Q., 2012. Study on regional site VS30 and PGA amplification factor. Journal of Earthquake Engineering and Engineering Vibration, 32(4): 40−46. (in Chinese) doi: 10.13197/j.eeev.2012.04.004
    师涵博, 张元生, 2024. 2022年1月8日青海门源6.9级强地震动模拟研究. 地震工程学报, 46(3): 680−691. doi: 10.20000/j.1000-0844.20230920001

    Shi H. B., Zhang Y. S., 2024. Strong ground motion simulation of the Qinghai M6.9 earthquake on January 8, 2022. China Earthquake Engineering Journal, 46(3): 680−691. (in Chinese) doi: 10.20000/j.1000-0844.20230920001
    石玉成, 陈厚群, 李敏等, 2005. 随机有限断层法合成地震动的研究与应用. 地震工程与工程振动, 25(4): 18−23. doi: 10.3969/j.issn.1000-1301.2005.04.003

    Shi Y. C., Chen H. Q., Li M., et al., 2005. The study and application of stochastic finite faults method in ground motion synthesizing. Earthquake Engineering and Engineering Vibration, 25(4): 18−23. (in Chinese) doi: 10.3969/j.issn.1000-1301.2005.04.003
    宋晋东, 朱景宝, 李水龙等, 2024. 基于机器学习预测模型的现地警报级别地震预警试验−−以2022年9月5日四川泸定6.8级地震为例. 地球物理学报, 67(8): 3004−3016. doi: 10.6038/cjg2022Q0789

    Song J. D., Zhu J. B., Li S. L., et al., 2024. Test of on-site alert-level earthquake early warning based on machine learning prediction models: A case for the Sichuan Luding M6.8 earthquake on September 5, 2022. Chinese Journal of Geophysics, 67(8): 3004−3016. (in Chinese) doi: 10.6038/cjg2022Q0789
    万永革, 黄少华, 王福昌等, 2023. 2022年门源地震序列揭示的断层几何形状及滑动特性. 地球物理学报, 66(7): 2796−2810. doi: 10.6038/cjg2022Q0345

    Wan Y. G., Huang S. H., Wang F. C., et al., 2023. Fault geometry and slip characteristics revealed by the 2022 Menyuan earthquake sequence. Chinese Journal of Geophysics, 66(7): 2796−2810. (in Chinese) doi: 10.6038/cjg2022Q0345
    王世进, 尹海权, 张超等, 2024. 基于层次分析法的地震预警设备运行能力综合评价研究. 震灾防御技术, 19(4): 830−836. doi: 10.11899/zzfy20240419

    Wang S. J., Yin H. Q., Zhang C., et al., 2024. Comprehensive evaluation of operational capability of earthquake warning equipment based on analytic hierarchy process. Technology for Earthquake Disaster Prevention, 19(4): 830−836. (in Chinese) doi: 10.11899/zzfy20240419
    谢俊举, 温增平, 高孟潭等, 2010. 2008年汶川地震近断层竖向与水平向地震动特征. 地球物理学报, 53(8): 1796−1805. doi: 10.3969/j.issn.0001-5733.2010.08.005

    Xie J. J., Wen Z. P., Gao M. T., et al., 2010. Characteristics of near-fault vertical and horizontal ground motion from the 2008 Wenchuan earthquake. Chinese Journal of Geophysics, 53(8): 1796−1805. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.08.005
    辛娅云, 2005. 竖向地震作用的重要性. 工程抗震与加固改造, 27(S1): 54−56. doi: 10.16226/j.issn.1002-8412.2005.s1.010

    Xin Y. Y., 2005. Importance of the vertical seismic effect. Earthquake Resistant Engineering and Retrofitting, 27(S1): 54−56. (in Chinese) doi: 10.16226/j.issn.1002-8412.2005.s1.010
    徐龙军, 谢礼立, 2007. 竖向地震动加速度反应谱特性. 地震工程与工程振动, 27(6): 17−23. doi: 10.13197/j.eeev.2007.06.007

    Xu L. J., Xie L. L., 2007. Characteristics of acceleration response spectra for vertical ground motions. Earthquake Engineering and Engineering Dynamics, 27(6): 17−23. (in Chinese) doi: 10.13197/j.eeev.2007.06.007
    赵德宏, 张帅, 2022. 基于ANFIS算法的天然石材铣削加工条件下的切削载荷预测方法. 沈阳建筑大学学报(自然科学版), 38(3): 535−542. doi: 10.11717/j.issn:2095-1922.2022.03.19

    Zhao D. H., Zhang S., 2022. Research on cutting force prediction under the milling condition of natural stone based on ANFIS algorithm. Journal of Shenyang Jianzhu University (Natural Science), 38(3): 535−542. (in Chinese) doi: 10.11717/j.issn:2095-1922.2022.03.19
    郑志, 王勇, 温卫平等, 2025. 基于机器学习的核电厂震后损伤评估及响应预测方法. 工程力学, 42(9): 124−136. doi: 10.6052/j.issn.1000-4750.2023.04.0250

    Zheng Z., Wang Y., Wen W. P., et al., 2025. A machine learning-based approach to post-earthquake damage assessment and response prediction for nuclear power plants. Engineering Mechanics, 42(9): 124−136. (in Chinese) doi: 10.6052/j.issn.1000-4750.2023.04.0250
    Abrahamson N., Silva W., 2008. Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra, 24(1): 67−97. doi: 10.1193/1.2924360
    Chen S., Hu X. H., Jiang W. P., et al., 2025. Data-physical fusion deep learning for site seismic response using KiK-net records. Earthquake Engineering & Structural Dynamics, 54(3): 993−1008.
    Giacinto G., Paolucci R., Roli F., 1997. Application of neural networks and statistical pattern recognition algorithms to earthquake risk evaluation. Pattern Recognition Letters, 18(11-13): 1353−1362. doi: 10.1016/S0167-8655(97)00088-3
    Hsu T. Y., Huang C. W., 2021. Onsite early prediction of PGA using CNN with multi-scale and multi-domain P-waves as input. Frontiers in Earth Science, 9: 626908. doi: 10.3389/feart.2021.626908
    Jozinović D., Lomax A., Štajduhar I., et al., 2020. Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophysical Journal International, 222(2): 1379−1389. doi: 10.1093/gji/ggaa233
    Segou M., Voulgaris N., 2010. Proschema: A Matlab application for processing strong motion records and estimating earthquake engineering parameters. Computers & Geosciences, 36(7): 977−986.
    Song C. K. , Chen B., 2024. Heterogeneity effect of elastic properties on piezomagnetic fields associated with dislocation source. Izvestiya. Physics of the Solid Earth, 60(2): 325−332.
    Wen W. P., Xu T. F., Hu J., et al., 2025. Seismic damage recognition of structural and non-structural components based on convolutional neural networks. Journal of Building Engineering, 102: 112012. doi: 10.1016/j.jobe.2025.112012
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-22
  • 录用日期:  2025-09-23
  • 修回日期:  2025-08-23
  • 网络出版日期:  2025-10-20

目录

    /

    返回文章
    返回