• ISSN 1673-5722
  • CN 11-5429/P

基于机器学习建立局部场地放大效应预测模型

胡苗 陈源涛 王玉石 杨笑梅

胡苗,陈源涛,王玉石,杨笑梅,2025. 基于机器学习建立局部场地放大效应预测模型. 震灾防御技术,20(4):1−13. doi:10.11899/zzfy20250108. doi: 10.11899/zzfy20250108
引用本文: 胡苗,陈源涛,王玉石,杨笑梅,2025. 基于机器学习建立局部场地放大效应预测模型. 震灾防御技术,20(4):1−13. doi:10.11899/zzfy20250108. doi: 10.11899/zzfy20250108
Hu Miao, Chen Yuantao, Wang Yushi, Yang Xiaomei. A Local Site Spectral Ratio Amplification Prediction Model Based on Machine Learning[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250108
Citation: Hu Miao, Chen Yuantao, Wang Yushi, Yang Xiaomei. A Local Site Spectral Ratio Amplification Prediction Model Based on Machine Learning[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250108

基于机器学习建立局部场地放大效应预测模型

doi: 10.11899/zzfy20250108
基金项目: 国家重点研发计划课题(2022 YFC3003503);国家自然科学基金项目(52192675)
详细信息
    作者简介:

    胡苗,女,生于1998年。博士研究生。主要从事地震工程方面的研究。E-mail:904294182@qq.com

    通讯作者:

    杨笑梅,女,生于1968年。副教授。主要从事地震工程方向的研究。E-mail:1572512807@qq.com

A Local Site Spectral Ratio Amplification Prediction Model Based on Machine Learning

  • 摘要: 局部区域强震台站的稀疏分布严重制约了数据驱动类局部场地放大效应预测模型的构建。本研究利用少量台站多次地震事件的观测数据,提出了一种有效的局部场地效应预测模型构建方法。基于场地效应评价的标准谱比法(Surface/Basement Spectral Ratio,SBSR)和广义反演法(Generalized Inversion Technique,GIT),分别结合卷积神经网络(Convolutional Neural Networks,CNN)和长短时记忆网络(Long Short-term Memory Networks,LSTM),构建了4类确定局部场地放大效应的智能预测模型(CNN-SBSR、CNN-GIT、LSTM-SBSR和LSTM-GIT)。其中SBSR类模型选取了震源参数(震级、震中距、震源深度)、场地参数(等效剪切波速、基岩加速度峰值)及空间坐标(经纬度)等为输入参数,而GIT类模型则仅依赖场地特性和空间信息等相关参数。与传统场地预测方法相比,本研究提出的模型能够直接从单次地震事件的观测数据中进行特征学习,突破了传统方法依赖台站平均谱比回归的局限。所构建的模型仅需输入目标场地的相关信息(如场地特征和空间信息参数等),即可快速预测局部区域中指定位置处的谱比,从而有效解决了传统方法中难以外推至无台站区域或预测精度较差的限制。基于所提出的方法,利用新西兰下哈特盆地6个台站数据构建交叉验证预测模型,结果表明:LSTM类模型凭借其优异的时序特征提取能力展现出更高的预测精度,而CNN模型在参数较少时表现出更好的稳健性。GIT方法因强化场地参数作用,整体性能优于SBSR方法。本研究为稀疏台站区域的场地放大效应预测提供了一种有效的解决方法。
  • 图  1  参数敏感性分析的结果

    Figure  1.  Results of the parametric sensitivity analysis

    图  2  贝叶斯优化算法的预测模型

    Figure  2.  Bayesian optimization algorithm for predictive models

    图  3  两类神经网络的结构

    Figure  3.  The structure of the two types of neural networks

    图  4  新西兰下哈特峡谷

    Figure  4.  Location map of Lower Hutt basin in New Zealand

    图  5  k-折交叉验证

    Figure  5.  k-fold cross validation

    图  6  整体架构

    Figure  6.  Overall architecture

    图  7  下哈特盆地的 CNN和LSTM 预测在不同输入参数模型下的评价指标

    Figure  7.  The evaluation index of CNN and LSTM prediction in the lower Hart Basin under different input parameter models

    图  8  下哈特盆地预测模型的评价指标平均值

    Figure  8.  The average value of evaluation indicators for the prediction model of the Lower Hart Basin

    图  9  下哈特盆地预测模型的各评价指标与平均值差值的绝对值

    Figure  9.  The absolute value of the difference between each evaluation index and the average value of the prediction model for the Lower Hart Basin

    图  10  新西兰下哈特盆地的预测结果

    Figure  10.  Prediction results of the Lower Hart Basin in New Zealand

    表  1  模型的特征参数对照表

    Table  1.   Comparison of the model's characteristic parameters

    评价方法输入参数输出参数
    GIT地震事件序号、纬度、经度、土厚、等效剪切波速40个频率点的谱比值
    SBSR纬度、经度、土厚、等效剪切波速、震级、震源深度、基岩加速度峰值、震中距
    下载: 导出CSV

    表  2  输出的40个频率点

    Table  2.   The selected 40 output frequency points

    40个频率点/Hz
    0.00310.10070.19840.2991
    0.39980.49740.59510.7965
    0.89420.99491.19021.3916
    1.48931.78531.98672.0844
    2.1822.48112.58182.9786
    3.96734.96225.95416.9459
    7.64177.84017.94088.2368
    8.93579.262210.916311.9051
    12.90313.894914.889715.8816
    16.873417.865318.857119.8520
    下载: 导出CSV

    表  3  下哈特盆地CNN/LSTM预测模型数据集划分

    Table  3.   Data division of CNN / LSTM predictive models of the Lower Hutt Basin

    模型总数据集训练集测试集
    CNN-FAIS-GIT/LSTM-FAIS-GIT14412321
    CNN-FAIS-SBSR/LSTM-FAIS-SBSR14412321
    CNN-LHES-GIT/LSTM-LHES-GIT14411232
    CNN-LHES-SBSR/LSTM-LHES-SBSR14411232
    CNN-PGMS-GIT/LSTM-PGMS-GIT14411430
    CNN-PGMS-SBSR/LSTM-PGMS-SBSR14411430
    CNN-SOCS-GIT/LSTM-SOCS-GIT14411727
    CNN-SOCS-SBSR/LSTM-SOCS-SBSR14411727
    CNN-TAIS-GIT/LSTM-TAIS-GIT14411034
    CNN-TAIS-SBSR/LSTM-TAIS-SBSR14411034
    下载: 导出CSV

    表  4  下哈特盆地CNN预测模型的超参数

    Table  4.   Hyper-parameters of CNN prediction models of the Lower Hart Basin

    模型隐藏层单元大小隐藏层层数最小批次量学习率最大迭代次数
    CNN-FAIS-SBSR[4,1]1800.0001610
    CNN-FAIS-GIT[5,1]4820.0007597
    CNN-LHES- SBSR[1,1]1930.0249661
    CNN-LHES-GIT[2,1]3800.0005515
    CNN-PGMS-SBSR[5,1]3990.0001509
    CNN-PGMS-GIT[4,1]1410.6112570
    CNN-SOCS-SBSR[1,1]3960.0012998
    CNN-SOCS-GIT[2,1]2730.0003506
    CNN-TAIS-SBSR[4,1]1970.0001560
    CNN-TAIS-GIT[5,1]1720.0003519
    下载: 导出CSV

    表  5  下哈特盆地LSTM预测模型的超参数

    Table  5.   Hyper-parameters of LSTM prediction models of the Lower Hart Basin

    模型隐藏层单元数量最小批次量学习率最大迭代次数
    LSTM-FAIS-SBSR77210.0002365
    LSTM-FAIS-GIT60720.0001522
    LSTM-LHES- SBSR67800.0419326
    LSTM-LHES-GIT54710.1546316
    LSTM-PGMS- SBSR54340.0017322
    LSTM-PGMS-GIT50500.9365314
    LSTM-SOCS- SBSR80690.9099305
    LSTM-SOCS-GIT75800.9645345
    LSTM-TAIS- SBSR51310.0174300
    LSTM-TAIS-GIT51610.0937305
    下载: 导出CSV

    表  6  4类预测模型3项评价指标的最大极差值

    Table  6.   Range of three evaluation metrics across four prediction models

    评价指标最大极差值 CNN-SBSR CNN-GIT LSTM-SBSR LSTM-GIT
    $ {C}_{\text{RMSE}} $ 0.87254 0.3251 0.2413 0.25258
    $ {C}_{\text{MAE}} $ 0.77723 0.30306 0.16877 0.22471
    $ {C}_{{\text{R}}^{\text{2}}} $ 2.37255 1.98627 1.64715 2.59909
    下载: 导出CSV
  • 刘平, 倪晓霞, 2025. 基于知识元与贝叶斯网络的地震次生地质灾害情景演化分析. 震灾防御技术, 20(2): 254−267. doi: 10.11899/zzfy20240161

    Liu P., Ni X. X., 2025. Evolutionary analysis of earthquake secondary geological disasters scenario based on knowledge element and Bayesian network. Technology for Earthquake Disaster Prevention, 20(2): 254−267 (in Chinese). doi: 10.11899/zzfy20240161
    孟思博, 赵嘉玮, 刘中宪, 2022. 基于差分进化-人工神经网络的沉积河谷地震动放大效应预测模型. 地震学报, 44(1): 170−181. doi: 10.11939/jass.20210141

    Meng S. B., Zhao J. W., Liu Z. X., 2022. Prediction model of seismic amplification effect in sedimentary valley based on differential evolution-artificial neural network. Acta Seismologica Sinica, 44(1): 170−181 (in Chinese). doi: 10.11939/jass.20210141
    强生银, 刘启方, 温瑞智等, 2021. 基于二维数值模拟的盆地地震动放大系数. 地震工程与工程振动, 41(4): 131−144. doi: 10.13197/j.eeev.2021.04.131.qiangsy.014

    Qiang S. Y., Liu Q. F., Wen R. Z., et al., 2021. Basin amplification effect of seismic ground motion based on seismic wave numerical simulation in two-dimensional model. Earthquake Engineering and Engineering Vibration, 41(4): 131−144 (in Chinese). doi: 10.13197/j.eeev.2021.04.131.qiangsy.014
    苏闻浩, 刘启方, 2024. 基于深度神经网络的地表地震动幅值预测研究. 震灾防御技术, 19(2): 387−396. doi: 10.11899/zzfy20240218

    Su W. H., Liu Q. F., 2024. Study on the prediction of ground motion amplitude based on deep neural network. Technology for Earthquake Disaster Prevention, 19(2): 387−396 (in Chinese). doi: 10.11899/zzfy20240218
    王海云, 谢礼立, 2010. 自贡市西山公园地形对地震动的影响. 地球物理学报, 53(7): 1631−1638. doi: 10.3969/j.issn.0001-5733.2010.07.014

    Wang H. Y., Xie L. L., 2010. Effects of topography on ground motion in the Xishan park, Zigong city. Chinese Journal of Geophysics, 53(7): 1631−1638 (in Chinese). doi: 10.3969/j.issn.0001-5733.2010.07.014
    叶鹏, 2013. 四川地区强震动台站的场地反应研究. 哈尔滨: 中国地震局工程力学研究所.

    Ye P., 2013. Study on site responses of strong motion stations in Sichuan area. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    周雍年, 2006. 中国大陆的强震动观测. 国际地震动态, (11): 1−6.

    Zhou Y. N., 2006. Strong motion observation in Chinese continent. Recent Developments in World Seismology, (11): 1−6 (in Chinese).
    朱景宝, 宋晋东, 李山有, 2022. 基于深度卷积神经网络的2021年5月21-22日云南漾濞地震和青海玛多地震震级估算. 地球物理学报, 65(2): 594−603.

    Zhu J. B. , Song J. D. , Li S. Y. , 2022. Magnitude estimation of Yunnan Yangbi earthquake and Qinghai Madoi earthquake on May 21-22,2021 based on deep convolutional neural network.Chinese Journal of Geophysics,65(2):594−603 (in Chinese).
    Abdalzaher M. S., Soliman M. S., El-Hady S. M., 2023. Seismic intensity estimation for earthquake early warning using optimized machine learning model. IEEE Transactions on Geoscience and Remote Sensing, 61: 5914211.
    Andrews D. J. , 1986. Objective determination of source parameters and similarity of earthquakes of different size. In: Das S. , Boatwright J. , Scholz C. H. , eds. , Earthquake Source Mechanics. Washington: American Geophysical Union, 259−267.
    Ba Z. N., Zhao J. X., Wang F. B., et al., 2025. Conditional generative adversarial networks for the generation of strong ground motion parameters using KiK-net ground motion records. Applied Soft Computing, 170: 112730. doi: 10.1016/j.asoc.2025.112730
    Chitkeshwar A., 2024. The role of machine learning in earthquake seismology: a review. Archives of Computational Methods in Engineering, 31(7): 3963−3975.
    Darragh R. B., Shakal A. F., 1991. The site response of two rock and soil station pairs to strong and weak ground motion. Bulletin of the Seismological Society of America, 81(5): 1885−1899. doi: 10.1785/BSSA0810051885
    Derras B., Bard P. Y., Cotton F., 2014. Towards fully data driven ground-motion prediction models for Europe. Bulletin of Earthquake Engineering, 12(1): 495−516. doi: 10.1007/s10518-013-9481-0
    Jeong S. J., Stump B. W., DeShon H. R., 2020. Spectral characteristics of ground motion from induced earthquakes in the Fort Worth basin, Texas, using the generalized inversion technique. Bulletin of the Seismological Society of America, 110(5): 2058−2076. doi: 10.1785/0120200097
    Jozinović D., Lomax A., Štajduhar I., et al., 2020. Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophysical Journal International, 222(2): 1379−1389. doi: 10.1093/gji/ggaa233
    Khosravikia F., Clayton P., Nagy Z., 2019. Artificial neural network-based framework for developing ground-motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas. Seismological Research Letters, 90(2A): 604−613. doi: 10.1785/0220180218
    Kim S., Hwang Y., Seo H., et al., 2020. Ground motion amplification models for Japan using machine learning techniques. Soil Dynamics and Earthquake Engineering, 132: 106095. doi: 10.1016/j.soildyn.2020.106095
    LeCun Y., Bengio Y., Hinton G., 2015. Deep learning. Nature, 521(7553): 436−444. doi: 10.1038/nature14539
    Li L., Jin F., Huang D. R., et al., 2023. Soil seismic response modeling of KiK-net downhole array sites with CNN and LSTM networks. Engineering Applications of Artificial Intelligence, 121: 105990. doi: 10.1016/j.engappai.2023.105990
    Liu Y. Q., Zhao Q. X., Wang Y. W., 2024. Peak ground acceleration prediction for on-site earthquake early warning with deep learning. Scientific Reports, 14(1): 5485. doi: 10.1038/s41598-024-56004-6
    Riga E., Makra K., Pitilakis K., 2016. Aggravation factors for seismic response of sedimentary basins: a code-oriented parametric study. Soil Dynamics and Earthquake Engineering, 91: 116−132. doi: 10.1016/j.soildyn.2016.09.048
    Semblat J. F., Kham A., Parara E., et al., 2005. Seismic wave amplification: basin geometry vs soil layering. Soil Dynamics and Earthquake Engineering, 25(7-10): 529−538. doi: 10.1016/j.soildyn.2004.11.003
    Snoek J. , Larochelle H. , Adams R. P. , 2012. Practical Bayesian optimization of machine learning algorithms. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc. , 2951−2959.
    Trifunac M. D., 2016. Site conditions and earthquake ground motion–A review. Soil Dynamics and Earthquake Engineering, 90: 88−100. doi: 10.1016/j.soildyn.2016.08.003
    Voulodimos A., Doulamis N., Doulamis A., et al., 2018. Deep learning for computer vision: a brief review. Computational Intelligence and Neuroscience, 2018: 7068349.
    Zhu C. B., Cotton F., Kawase H., et al., 2022. How well can we predict earthquake site response so far? Site-specific approaches. Earthquake Spectra, 38(2): 1047−1075. doi: 10.1177/87552930211060859
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  11
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 录用日期:  2025-09-04
  • 修回日期:  2025-08-26
  • 网络出版日期:  2025-09-24

目录

    /

    返回文章
    返回