Dynamic Response Analysis of Mechanically Connected Confined Space Reinforced Soil Retaining Wall
-
摘要: 针对施工场地受限和地震频发区域中加筋土挡墙的应用需求,本研究通过开展机械连接式有限空间加筋土挡墙振动台试验,阐述了结构震害现象及墙体变形模式,分析了加速度响应、面板位移、筋材应变、潜在破裂面等力学行为变化特征。研究结果表明,挡墙加速度放大系数随着输入频率增大而增大,并沿墙高呈非线性分布,在墙顶处取得最大值。各工况结束后挡墙累积位移分别为1.09%H、1.28%H、2.05%H、10.96%H(H为挡墙高度),正弦波0.4 g结束后挡墙已发生中度破坏。筋材应变随输入频率增大而增大,并沿墙高呈非线性变化。潜在破裂面由墙趾出发,沿填料与边坡接触面发育;墙后机械连接处是结构薄弱处,设计施工时应进行相应加固。共振会使挡墙位移、筋材应变显著增加,导致挡墙破坏,工程中应避免结构发生该现象。本研究结果可为有限空间加筋土挡墙设计与施工提供参考,推动该结构在地震频发区的建设与应用。Abstract: In response to the demand for the reinforced soil retaining walls in the confined construction site and earthquake-prone areas, this study expounded the seismic damage phenomenon and wall deformation mode of the structure by carrying out the shaking table test of mechanically connected confined space reinforced soil retaining wall, and analyzed the mechanical behavior change characteristics such as acceleration response, panel displacement, reinforcement strain, and potential fracture surface. The results show that the acceleration amplification coefficient of the retaining wall increases with the increase of input frequency and is nonlinear along the wall height, and the maximum value is obtained at the top of the wall. The cumulative displacement of the retaining wall after the end of each working condition was 1.09% of wall height (H), 1.28% of wall height (H), 2.05%of wall height (H) and 10.96% of wall height (H), respectively, and the retaining wall was moderately damaged after sine wave 0.4g. The reinforcement strain increases with the increase of the input frequency and changes nonlinearly along the wall height. The potential fracture surface starts from the toe of the wall and develops along the contact surface between the filler and the slope. The mechanical connection behind the wall is a weak link in the structure, and it should be reinforced accordingly during design and construction. The resonance will significantly increase the displacement of the retaining wall and the strain of the reinforcement material, resulting in the failure of the retaining wall, and this phenomenon should be avoided in the project. The results of this study can provide a reference for the design and construction of reinforced earth retaining walls in confined space, and promote the construction and application of the structure in earthquake-prone areas.
-
表 1 模型相似参数
Table 1. Model similarity parameters
序号 物理量 相似关系 相似常数(原型/模型) 1 长度L $ {C_{L}} $ 10 2 弹模E $ {C_{{_E}}} = 1 $ 1 3 密度ρ $ {C_\rho } = 1 $ 1 4 速度v $ {C_{\text{v}}} = {C_L^{0.5}} $ 3.16 5 时间t $ {C_{t}} = {C_L^{0.5}} $ 3.16 6 加速度a $ {C_a} = 1 $ 1 7 频率f $ {C_{\text{f}}} = {C_L^{0.5}} $ 0.316 8 应力σ $ {C_\sigma } = 1 $ 1 表 2 填料特性
Table 2. Characteristics of backfill soil
参数 符号 数值 内摩擦角/(°) φ 41 特征粒径/m D10 1.80×10−4 D30 2.90×10−4 D60 3.70×10−4 最大干密度/(kg·m−3) ρdmax 1.90×10−3 最小干密度/(kg·m−3) ρdmin 1.52×10−3 弹性模量/(MPa) Ε 20 泊松比 μ 0.25 比重 Gs 2.86 表 3 模型试验工况
Table 3. Model test condition
序号 输入波形 峰值加速度/g 频率/Hz 白噪声1 白噪声 0.05 — 工况1 正弦波 0.1 1 工况2 0.1 3 工况3 0.1 5 工况4 0.1 7 工况5 0.1 9 白噪声2 白噪声 0.05 — 工况6 正弦波 0.2 1 工况7 0.2 3 工况8 0.2 5 工况9 0.2 7 工况10 0.2 9 白噪声3 白噪声 0.05 — 工况11 正弦波 0.4 1 工况12 0.4 3 工况13 0.4 5 工况14 0.4 7 工况15 0.4 9 白噪声4 白噪声 0.05 — 工况16 正弦波 0.6 5 白噪声5 白噪声 0.05 — -
蔡晓光, 王学鹏, 李思汉等, 2023. 复合格宾土工格栅加筋土挡墙模型振动台试验. 振动工程学报, 36(3): 767−775.Cai X. G., Wang X. P., Li S. H., et al., 2023. Shaking table test on the model of reinforced soil retaining wall with composite gabion and geogrid. Journal of Vibration Engineering, 36(3): 767−775. (in Chinese) 何江飞, 姚磊华, 马程昊等, 2019. 高陡黄土边坡多级有限填土加筋土-框锚组合体系抗滑分析. 科学技术与工程, 19(13): 235−242. doi: 10.3969/j.issn.1671-1815.2019.13.037He J. F., Yao L. H., Ma C. H., et al., 2019. Anti-slide analysis on composite system of multi-stage reinforced soil with limited backfill and frame foundation beam with anchor cable on high-steep loess slope. Science Technology and Engineering, 19(13): 235−242. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.13.037 胡荣, 徐超, 朱洪等, 2012. 三峡库区某短加筋挡土墙数值模拟分析. 中国港湾建设, (5): 7−10.Hu R., Xu C., Zhu H., et al., 2012. Numerical stimulation of a shored mechanically stabilized wall in the three gorges reservoir area. China Harbour Engineering, (5): 7−10. (in Chinese) 李思汉, 蔡晓光, 景立平等, 2023. 模块式加筋土挡墙震后健康状态识别研究. 岩土工程学报, 45(S2): 116−121. doi: 10.11779/CJGE2023S20013Li S. H., Cai X. G., Jing L. P., et al., 2023. Health status identification of modular-block-reinforced soil retaining walls after earthquakes. Chinese Journal of Geotechnical Engineering, 45(S2): 116−121. (in Chinese) doi: 10.11779/CJGE2023S20013 刘冬, 2018. 墙后有限宽度填土主动土压力的DEM分析及简化计算研究. 长沙: 湖南大学.Liu D., 2018. DEM analysis and simplified calculation of active earth pressure on retaining walls of narrow backfill width. Changsha: Hunan University. (in Chinese) 宋世宏, 2023. 短加筋土挡墙的变形特性及结构优化方法研究. 成都: 西南交通大学.Song S. H., 2023. Study on deformation characteristics and structural optimization design of shored mechanically stabilized earth wall. Chengdu: Southwest Jiaotong University. (in Chinese) 吴琪, 房海元, 2024. 有限空间下加筋土陡坡加固路基设计. 公路与汽运, 40(6): 81−84. 徐超, 罗玉珊, 贾斌等, 2016. 短加筋土挡墙墙后连接作用的离心模型试验研究. 岩土工程学报, 38(1): 180−186. doi: 10.11779/CJGE201601020Xu C., Luo Y. S., Jia B., et al., 2016. Effects of connection forms on shored mechanically stabilized earth walls by centrifugal model tests. Chinese Journal of Geotechnical Engineering, 38(1): 180−186. (in Chinese) doi: 10.11779/CJGE201601020 徐超, 梁程, 罗玉珊, 2017. 有限填土加筋土挡墙的稳定性及破坏模式分析. 水文地质工程地质, 44(1): 104−109, 122.Xu C., Liang C., Luo Y. S., 2017. Stability and failure modes of geosynthetic reinforced soil wall with limited retained backfill. Hydrogeology & Engineering Geology, 44(1): 104−109,122. (in Chinese) 徐鹏, 蒋关鲁, 邱俊杰等, 2019. 整体刚性面板加筋土挡墙振动台模型试验研究. 岩土力学, 40(3): 998−1004.Xu P., Jiang G. L., Qiu J. J., et al., 2019. Shaking table tests on reinforced soil retaining walls with full-height rigid facing. Rock and Soil Mechanics, 40(3): 998−1004. (in Chinese) 袁超, 蔡晓光, 李思汉等, 2025. 有限空间加筋土挡墙研究综述. 防灾科技学院学报, 27(1): 50−58. doi: 10.3969/j.issn.1673-8047.2025.01.005Yuan C., Cai X. G., Li S. H., et al., 2025. A research review of reinforced soil retaining walls in confined space. Journal of Institute of Disaster Prevention, 27(1): 50−58. (in Chinese) doi: 10.3969/j.issn.1673-8047.2025.01.005 Hung W. Y., Nomleni I. A., Soegianto D. P., et al., 2023. Centrifuge modeling on the effect of mechanical connection on the dynamic performance of narrow geosynthetic reinforced soil wall. Geotextiles and Geomembranes, 51(4): 156−172. doi: 10.1016/j.geotexmem.2023.04.002 Iai S., 1989. Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 29(1): 105−118. doi: 10.3208/sandf1972.29.105 Jamnani A. R., Yazdandoust M., Sabermahani M., 2023. Effect of a two-tiered configuration on the seismic behaviour of reinforced soil walls. Geosynthetics International, 30(1): 3−28. doi: 10.1680/jgein.22.00150 Jayakrishnan P. V. , Thiyyakkandi S. , Mottadelli L. , et al. , 2023. Experience from design & construction of a stable feature MSE wall in Dubai. In: Proceedings of the 4th African Regional Conference on Geosynthetics. Cairo: EDP Sciences, 02020. Kuwano J., Miyata Y., Koseki J., 2014. Performance of Reinforced soil walls in the 2011 Tohoku earthquake. Geosynthetics International, 21(3): 179−196. doi: 10.1680/gein.14.00008 Lee Y. B., Ko H. Y., Mccartney J. S., 2010. Deformation response of shored MSE walls under surcharge loading in the centrifuge. Geosynthetics International, 17(6): 389−402. doi: 10.1680/gein.2010.17.6.389 Li S. H., Cai X. G., Jing L. P., et al., 2021. Lateral displacement control of modular block reinforced soil retaining walls under horizontal seismic loading. Soil Dynamics and Earthquake Engineering, 141: 106485. doi: 10.1016/j.soildyn.2020.106485 Luo Y. S. , Xu C. , Xiang W. , 2018. Full-scale tests on high narrowed mechanically stabilized roadbed with wrapped-around geogrid facing. In: Li L. , Cetin B. , Yang X. M. , eds. , Proceedings of GeoShanghai 2018 International Conference: Ground Improvement and Geosynthetics. Singapore: Springer, 327−337. Morrison K. F. , Harrison F. E. , Collin J. G. , et al. , 2007. Full-scale testing of a shored mechanically-stabilized earth (SMSE) wall employing short reinforcements. In: Gabr M. A. , Bowders J. J. , eds. , Geosynthetics in Reinforcement and Hydraulic Applications. Denver, CO, USA: ASCE, 1−10. Ren F. F., Xu H., Ji Y. J., et al., 2022. Experimental study on the mechanical behavior of shored mechanically stabilized earth walls for widening existing reinforced embankments. Geotextiles and Geomembranes, 50(4): 737−750. doi: 10.1016/j.geotexmem.2022.03.013 U. S. Department of Transportation Federal Highway Administration, 2009. Design and construction of mechanically stabilized earth walls and reinforced soil slopes-volume I. Washington, D. C. : National Highway Institute, 149−150. Yang K. H. , Kniss K. T. , Zornberg J. G. , et al. , 2008. Finite element analyses for centrifuge modeling of narrow MSE walls. In: Proceedings of the 1st Pan American Geosynthetics Conference & Exhibition. Cancún: GeoAmericas, 1246−1255. Yang S. C., Song S. H., Zhang F., et al., 2024. Performance analysis of shored mechanically stabilized earth walls with wrapped facing using numerical simulations. Journal of Geotechnical and Geoenvironmental Engineering, 150(6): 04024045. doi: 10.1061/JGGEFK.GTENG-12058 -