Centrifugal Shaking Table Test on Seismic Response of High-rise Building Pile Raft Foundation Underground Structure System in Liquefaction Site
-
摘要: 为了探究液化场地中高层建筑-桩筏基础-地下结构动力响应规律,本文设计并制作了高层建筑-桩筏基础–地下结构体系缩尺模型,利用大型离心机振动台设备,开展了液化场地中高层建筑-桩筏基础-地下结构体系动力响应试验研究。重点分析了在不同强度地震作用下,可液化场地土、高层建筑、桩筏基础和地下结构的动力响应特性,主要包括土体孔隙水压力、地基加速度、位移沉降、土压力等,并深入探讨了地基液化对高层建筑-桩筏基础-地下结构动力响应的影响。试验结果表明,高层建筑-桩筏基础下卧地基的液化程度最高;强震作用下桩筏基础与地下结构的存在,在一定程度上加速了二者之间土体孔隙水的排出;小震作用下筏板和地下结构的加速度响应放大,在强震作用下,由于地基液化对邻近结构的影响,筏板和地下结构的加速度响应先放大后减小;试验场地整体发生了不均匀沉降,地下结构上的土体存在明显的隆起变形;在大震作用下,地基液化对桩筏基础与地下结构有一定的减震作用。浅层土反应谱的短周期成分地震响应显著,深层土反应谱的长周期成分地震响应显著。Abstract: To investigate the dynamic response mechanisms of the liquefiable site-high-rise building pile-raft structure-underground structure system, this study designed and fabricated a scaled model of the high-rise building pile-raft structure-underground structure system. Utilizing a large-scale centrifuge shaking table device, dynamic response tests were conducted on the liquefiable site-pile-raft foundation-underground structure system. The analysis focused on the dynamic response characteristics of liquefiable site soils, high-rise building pile-raft foundations, and underground structures under seismic actions of varying intensities, primarily including soil pore water pressure, foundation acceleration, displacement settlement, and earth pressure. The study thoroughly investigated the influence of soil liquefaction on the dynamic responses of both the pile-raft foundation and underground structures. Experimental results reveal that: The underlying foundation beneath the high-rise building pile-raft structure exhibited the highest degree of liquefaction; Under strong seismic excitation, the presence of pile-raft foundations and underground structures accelerated pore water drainage in the intervening soil to some extent; During minor earthquakes, the acceleration responses of raft slabs and underground structures demonstrated amplification effects, whereas under strong earthquakes, these responses initially amplified then attenuated due to liquefaction-induced effects on adjacent structures; The test site experienced differential settlement overall, with significant heave deformation observed in the soil overlying underground structures; Under intense seismic loading, foundation liquefaction demonstrated a notable seismic mitigation effect on both the pile-raft structure and underground structures.Shallow soil sites exhibit significant amplification in the short-period range of the response spectrum, whereas deep soil deposits exhibit significant amplification in the long-period range.
-
表 1 模型参数
Table 1. Model parameters
模型 参数 原型 模型 高层建筑 总质量/kg 1699500 13.596 层高/m 5 0.1 层重/kg 283250 2.3 地下结构 质量/kg 8721000 6.967 壁厚/m 0.5 0.01 筏板 厚度/m 1 0.02 质量/kg 705000 5.44 表 2 地表不同位置处最终沉降值
Table 2. Final settlement value at different positions on the surface
工况 LVDT1 LVDT2 LVDT3 0.08 g Kobe −9.41 mm −12.44 mm −12.44 mm 0.15 g Kobe −15.55 mm −20.08 mm −47.27 mm 0.30 g Kobe −37.94 mm −67.14 mm −117.56 mm -
安军海,陶连金,王焕杰等,2017. 可液化场地下盾构扩挖地铁车站结构地震破坏机制振动台试验. 岩石力学与工程学报,36(8):2018−2030.An J. H., Tao L. J., Wang H. J., et al., 2017. Shaking table experiments on seismic response of a shield-enlarge-dig type subway station structure in liquefiable ground. Chinese Journal of Rock Mechanics and Engineering, 36(8): 2018−2030. (in Chinese) 陈龙伟,刘昊儒,任叶飞等,2024. 2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析. 岩土工程学报,46(7):1541−1548. doi: 10.11779/CJGE20230333Chen L. W., Liu H. R., Ren Y. F., et al., 2024. In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th, 2023. Chinese Journal of Geotechnical Engineering, 46(7): 1541−1548. (in Chinese) doi: 10.11779/CJGE20230333 戴启权,钱德玲,张泽涵等,2015. 液化场地超高层建筑群桩基础动力响应试验研究. 岩石力学与工程学报,34(12):2572−2579.Dai Q. Q., Qian D. L., Zhang Z. H., et al., 2015. Experimental research on dynamic response of pile group of super highrise building on liquefiable ground. Chinese Journal of Rock Mechanics and Engineering, 34(12): 2572−2579. (in Chinese) 李雨润,刘毅,梁旭华,2024. 液化场地-群桩-上部结构动力特性研究综述. 河北工业大学学报,53(1):74−80.Li Y. R., Liu Y., Liang X. H., 2024. Review on dynamic characteristics of liquefied site-pile group-superstructure. Journal of Hebei University of Technology, 53(1): 74−80. (in Chinese) 刘春晓,陶连金,边金等,2021. 可液化土层对地下结构地震影响的振动台试验. 浙江大学学报(工学版),55(7):1327−1338. doi: 10.3785/j.issn.1008-973X.2021.07.012Liu C. X., Tao L. J., Bian J., et al., 2021. Shaking table test of seismic effect of liquefiable soil layer on underground structure. Journal of Zhejiang University (Engineering Science), 55(7): 1327−1338. (in Chinese) doi: 10.3785/j.issn.1008-973X.2021.07.012 刘惠珊,1999. 桩基震害及原因分析−−日本阪神大地震的启示. 工程抗震,(1):37−43. 刘恢先,1986. 唐山大地震震害. 北京:地震出版社. 唐军平,李建强,孙双祥等,2017. 佛山市城市轨道交通二号线南庄站砂土液化分析及处理措施. 路基工程,(1):189−193,212.Tang J. P., Li J. Q., Sun S. X., et al., 2017. Analysis of sand liquefaction at Nanzhuang station of Foshan urban rail transit line 2 and treatment measure. Subgrade Engineering, (1): 189−193,212. (in Chinese) 唐亮,满孝峰,丛晟亦等,2023. 液化场地桩基地震失效机制:现状与挑战. 岩土力学,44(10):2979−2996.Tang L., Man X. F., Cong S. Y., et al., 2023. Failure mechanism of pile foundations in liquefiable soils under seismic loading: status and challenge. Rock and Soil Mechanics, 44(10): 2979−2996. (in Chinese) 许成顺,豆鹏飞,杜修力等,2019. 液化场地-群桩基础-结构体系动力响应分析−−大型振动台模型试验研究. 岩土工程学报,41(12):2173−2181. doi: 10.11779/CJGE201912001Xu C. S., Dou P. F., Du X. L., et al., 2019. Dynamic response analysis of liquefied site-pile group foundation-structure system−−large-scale shaking table model test. Chinese Journal of Geotechnical Engineering, 41(12): 2173−2181. (in Chinese) doi: 10.11779/CJGE201912001 闫志晓,李雨润,王东升等,2023. 覆水砂土场地中桥梁群桩基础地震响应离心试验研究. 岩土力学,44(3):861−872.Yan Z. X., Li Y. R., Wang D. S., et al., 2023. Centrifugal experimental study on seismic response of bridge pile group foundation in overlaying water sandy field. Rock and Soil Mechanics, 44(3): 861−872. (in Chinese) 庄海洋,赵畅,于旭等,2022. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究. 岩土工程学报,44(6):979−987.Zhuang H. Y., Zhao C., Yu X., et al., 2022. Earthquake responses of piles-soil dynamic interaction system for base-isolated structure system based on shaking table tests. Chinese Journal of Geotechnical Engineering, 44(6): 979−987. (in Chinese) Bhattacharya S., Madabhushi S. P. G., Bolton M. D., 2004. An alternative mechanism of pile failure in liquefiable deposits during earthquakes. Géotechnique, 54(3): 203−213. Chen R. R., Taiebat M., Wang R., et al., 2018. Effects of layered liquefiable deposits on the seismic response of an underground structure. Soil Dynamics and Earthquake Engineering, 113: 124−135. doi: 10.1016/j.soildyn.2018.05.037 Chen S., Tang B. Z., Zhao K., et al., 2020. Seismic response of irregular underground structures under adverse soil conditions using shaking table tests. Tunnelling and Underground Space Technology, 95: 103145. doi: 10.1016/j.tust.2019.103145 Hashash Y. M. A., Hook J. J., Schmidt B., et al., 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4): 247−293. doi: 10.1016/S0886-7798(01)00051-7 Sun Q. Q., Dias D., Ribeiro e Sousa L., 2019. Impact of an underlying soft soil layer on tunnel lining in seismic conditions. Tunnelling and Underground Space Technology, 90: 293−308. doi: 10.1016/j.tust.2019.05.011 Wang Z. Z., Gao B., Jiang Y. J., et al., 2009. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Science in China Series E: Technological Sciences, 52(2): 546−558. doi: 10.1007/s11431-009-0054-z Wu Q., Ding X. M., Zhang Y. L., et al., 2024. Experimental and numerical study on dynamic response of underground structure in coral sand under earthquakes. Journal of Earthquake Engineering, 28(1): 62−84. doi: 10.1080/13632469.2023.2173491 Yamaguchi A., Mori T., Kazama M., et al., 2012. Liquefaction in Tohoku district during the 2011 off the Pacific coast of Tohoku earthquake. Soils and Foundations, 52(5): 811−829. doi: 10.1016/j.sandf.2012.11.005 Zheng G., Fan Q., Zhang T. Q., et al., 2019. Multistage regulation strategy as a tool to control the vertical displacement of railway tracks placed over the building site of two overlapped shield tunnels. Tunnelling and Underground Space Technology, 83: 282−290. doi: 10.1016/j.tust.2018.09.040 -