• ISSN 1673-5722
  • CN 11-5429/P

液化场地中高层建筑-桩筏基础-地下结构体系地震响应离心振动台试验研究

李雨润 王铭 邵鼎松 田兴旺 李赫

李雨润,王铭,邵鼎松,田兴旺,李赫,2025. 液化场地中高层建筑-桩筏基础-地下结构体系地震响应离心振动台试验研究. 震灾防御技术,x(x):1−13. doi:10.11899/zzfy20250065. doi: 10.11899/zzfy20250065
引用本文: 李雨润,王铭,邵鼎松,田兴旺,李赫,2025. 液化场地中高层建筑-桩筏基础-地下结构体系地震响应离心振动台试验研究. 震灾防御技术,x(x):1−13. doi:10.11899/zzfy20250065. doi: 10.11899/zzfy20250065
Li Yurun, Wang Ming, Shao Dingsong, Tian Xingwang, Li He. Centrifugal Shaking Table Test on Seismic Response of High-rise Building Pile Raft Foundation Underground Structure System in Liquefaction Site[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250065
Citation: Li Yurun, Wang Ming, Shao Dingsong, Tian Xingwang, Li He. Centrifugal Shaking Table Test on Seismic Response of High-rise Building Pile Raft Foundation Underground Structure System in Liquefaction Site[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250065

液化场地中高层建筑-桩筏基础-地下结构体系地震响应离心振动台试验研究

doi: 10.11899/zzfy20250065
基金项目: 基金项目 国家自然科学基金(52278340);河北省自然科学基金(E2023202028)
详细信息
    作者简介:

    李雨润,男,生于1978年。教授、博士生导师。主要从事岩土工程方面的研究与教学工作。E-mail:iemlyr7888@hebut.edu.cn

Centrifugal Shaking Table Test on Seismic Response of High-rise Building Pile Raft Foundation Underground Structure System in Liquefaction Site

  • 摘要: 为了探究液化场地中高层建筑-桩筏基础-地下结构动力响应规律,本文设计并制作了高层建筑-桩筏基础–地下结构体系缩尺模型,利用大型离心机振动台设备,开展了液化场地中高层建筑-桩筏基础-地下结构体系动力响应试验研究。重点分析了在不同强度地震作用下,可液化场地土、高层建筑、桩筏基础和地下结构的动力响应特性,主要包括土体孔隙水压力、地基加速度、位移沉降、土压力等,并深入探讨了地基液化对高层建筑-桩筏基础-地下结构动力响应的影响。试验结果表明,高层建筑-桩筏基础下卧地基的液化程度最高;强震作用下桩筏基础与地下结构的存在,在一定程度上加速了二者之间土体孔隙水的排出;小震作用下筏板和地下结构的加速度响应放大,在强震作用下,由于地基液化对邻近结构的影响,筏板和地下结构的加速度响应先放大后减小;试验场地整体发生了不均匀沉降,地下结构上的土体存在明显的隆起变形;在大震作用下,地基液化对桩筏基础与地下结构有一定的减震作用。浅层土反应谱的短周期成分地震响应显著,深层土反应谱的长周期成分地震响应显著。
  • 图  1  试验设备

    Figure  1.  Test equipment

    图  2  建筑模型

    Figure  2.  Structure model

    图  3  传感器布设图

    Figure  3.  Sensor deployment diagram

    图  4  台面输入0.30 g Kobe波加速度时程及傅里叶谱

    Figure  4.  Acceleration time history and Fourier spectrum of 0.30 g Kobe wave input to the table

    图  5  不同位置土层超孔压比

    Figure  5.  Excess pore pressure ratio of soil layers at different locations

    图  6  深度10.5 m处不同位置超孔压比最大值

    Figure  6.  Maximum excess pore pressure ratio at different positions at 10.5 m

    图  7  不同工况自由场地基与结构间地基加速度响应

    Figure  7.  Acceleration response of foundation between free field foundation and structure for different condition

    图  8  0.30 g Kobe波工况不同位置加速度反应谱

    Figure  8.  Acceleration response spectrum at different positions under 0.30 g Kobe wave condition

    图  9  0.30 g Kobe波工况地基和台面的加速度响应

    Figure  9.  Acceleration response of foundation and table for 0.3 g Kobe earthquake condition

    图  10  地下结构两侧土压力时程曲线

    Figure  10.  Time curves of earth pressure on both sides of underground structure

    图  11  地表沉降曲线

    Figure  11.  Surface subsidence curve

    图  12  地下结构加速度、台面加速度与结构间地基超孔压比时程

    Figure  12.  Time courses of underground structure acceleration, table acceleration, and excess pore pressure ratio between structures

    图  13  筏板加速度、台面加速度与下卧地基超孔压比时程

    Figure  13.  Time courses of raft acceleration, table acceleration,and excess pore pressure ratio of the underlying foundation

    图  14  高层建筑各楼层动力响应与台面加速度和加速度峰值放大系数

    Figure  14.  Dynamic response of each floor of a high-rise building and table acceleration and Peak acceleration amplification factor

    图  15  不同位置处加速度傅里叶谱对比

    Figure  15.  Comparison of acceleration Fourier spectrum at different positions

    表  1  模型参数

    Table  1.   Model parameters

    模型参数原型模型
    高层建筑总质量/kg169950013.596
    层高/m50.1
    层重/kg2832502.3
    地下结构质量/kg87210006.967
    壁厚/m0.50.01
    筏板厚度/m10.02
    质量/kg7050005.44
    下载: 导出CSV

    表  2  地表不同位置处最终沉降值

    Table  2.   Final settlement value at different positions on the surface

    工况LVDT1LVDT2LVDT3
    0.08 g Kobe−9.41 mm−12.44 mm−12.44 mm
    0.15 g Kobe−15.55 mm−20.08 mm−47.27 mm
    0.30 g Kobe−37.94 mm−67.14 mm−117.56 mm
    下载: 导出CSV
  • 安军海,陶连金,王焕杰等,2017. 可液化场地下盾构扩挖地铁车站结构地震破坏机制振动台试验. 岩石力学与工程学报,36(8):2018−2030.

    An J. H., Tao L. J., Wang H. J., et al., 2017. Shaking table experiments on seismic response of a shield-enlarge-dig type subway station structure in liquefiable ground. Chinese Journal of Rock Mechanics and Engineering, 36(8): 2018−2030. (in Chinese)
    陈龙伟,刘昊儒,任叶飞等,2024. 2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析. 岩土工程学报,46(7):1541−1548. doi: 10.11779/CJGE20230333

    Chen L. W., Liu H. R., Ren Y. F., et al., 2024. In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th, 2023. Chinese Journal of Geotechnical Engineering, 46(7): 1541−1548. (in Chinese) doi: 10.11779/CJGE20230333
    戴启权,钱德玲,张泽涵等,2015. 液化场地超高层建筑群桩基础动力响应试验研究. 岩石力学与工程学报,34(12):2572−2579.

    Dai Q. Q., Qian D. L., Zhang Z. H., et al., 2015. Experimental research on dynamic response of pile group of super highrise building on liquefiable ground. Chinese Journal of Rock Mechanics and Engineering, 34(12): 2572−2579. (in Chinese)
    李雨润,刘毅,梁旭华,2024. 液化场地-群桩-上部结构动力特性研究综述. 河北工业大学学报,53(1):74−80.

    Li Y. R., Liu Y., Liang X. H., 2024. Review on dynamic characteristics of liquefied site-pile group-superstructure. Journal of Hebei University of Technology, 53(1): 74−80. (in Chinese)
    刘春晓,陶连金,边金等,2021. 可液化土层对地下结构地震影响的振动台试验. 浙江大学学报(工学版),55(7):1327−1338. doi: 10.3785/j.issn.1008-973X.2021.07.012

    Liu C. X., Tao L. J., Bian J., et al., 2021. Shaking table test of seismic effect of liquefiable soil layer on underground structure. Journal of Zhejiang University (Engineering Science), 55(7): 1327−1338. (in Chinese) doi: 10.3785/j.issn.1008-973X.2021.07.012
    刘惠珊,1999. 桩基震害及原因分析−−日本阪神大地震的启示. 工程抗震,(1):37−43.
    刘恢先,1986. 唐山大地震震害. 北京:地震出版社.
    唐军平,李建强,孙双祥等,2017. 佛山市城市轨道交通二号线南庄站砂土液化分析及处理措施. 路基工程,(1):189−193,212.

    Tang J. P., Li J. Q., Sun S. X., et al., 2017. Analysis of sand liquefaction at Nanzhuang station of Foshan urban rail transit line 2 and treatment measure. Subgrade Engineering, (1): 189−193,212. (in Chinese)
    唐亮,满孝峰,丛晟亦等,2023. 液化场地桩基地震失效机制:现状与挑战. 岩土力学,44(10):2979−2996.

    Tang L., Man X. F., Cong S. Y., et al., 2023. Failure mechanism of pile foundations in liquefiable soils under seismic loading: status and challenge. Rock and Soil Mechanics, 44(10): 2979−2996. (in Chinese)
    许成顺,豆鹏飞,杜修力等,2019. 液化场地-群桩基础-结构体系动力响应分析−−大型振动台模型试验研究. 岩土工程学报,41(12):2173−2181. doi: 10.11779/CJGE201912001

    Xu C. S., Dou P. F., Du X. L., et al., 2019. Dynamic response analysis of liquefied site-pile group foundation-structure system−−large-scale shaking table model test. Chinese Journal of Geotechnical Engineering, 41(12): 2173−2181. (in Chinese) doi: 10.11779/CJGE201912001
    闫志晓,李雨润,王东升等,2023. 覆水砂土场地中桥梁群桩基础地震响应离心试验研究. 岩土力学,44(3):861−872.

    Yan Z. X., Li Y. R., Wang D. S., et al., 2023. Centrifugal experimental study on seismic response of bridge pile group foundation in overlaying water sandy field. Rock and Soil Mechanics, 44(3): 861−872. (in Chinese)
    庄海洋,赵畅,于旭等,2022. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究. 岩土工程学报,44(6):979−987.

    Zhuang H. Y., Zhao C., Yu X., et al., 2022. Earthquake responses of piles-soil dynamic interaction system for base-isolated structure system based on shaking table tests. Chinese Journal of Geotechnical Engineering, 44(6): 979−987. (in Chinese)
    Bhattacharya S., Madabhushi S. P. G., Bolton M. D., 2004. An alternative mechanism of pile failure in liquefiable deposits during earthquakes. Géotechnique, 54(3): 203−213.
    Chen R. R., Taiebat M., Wang R., et al., 2018. Effects of layered liquefiable deposits on the seismic response of an underground structure. Soil Dynamics and Earthquake Engineering, 113: 124−135. doi: 10.1016/j.soildyn.2018.05.037
    Chen S., Tang B. Z., Zhao K., et al., 2020. Seismic response of irregular underground structures under adverse soil conditions using shaking table tests. Tunnelling and Underground Space Technology, 95: 103145. doi: 10.1016/j.tust.2019.103145
    Hashash Y. M. A., Hook J. J., Schmidt B., et al., 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4): 247−293. doi: 10.1016/S0886-7798(01)00051-7
    Sun Q. Q., Dias D., Ribeiro e Sousa L., 2019. Impact of an underlying soft soil layer on tunnel lining in seismic conditions. Tunnelling and Underground Space Technology, 90: 293−308. doi: 10.1016/j.tust.2019.05.011
    Wang Z. Z., Gao B., Jiang Y. J., et al., 2009. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Science in China Series E: Technological Sciences, 52(2): 546−558. doi: 10.1007/s11431-009-0054-z
    Wu Q., Ding X. M., Zhang Y. L., et al., 2024. Experimental and numerical study on dynamic response of underground structure in coral sand under earthquakes. Journal of Earthquake Engineering, 28(1): 62−84. doi: 10.1080/13632469.2023.2173491
    Yamaguchi A., Mori T., Kazama M., et al., 2012. Liquefaction in Tohoku district during the 2011 off the Pacific coast of Tohoku earthquake. Soils and Foundations, 52(5): 811−829. doi: 10.1016/j.sandf.2012.11.005
    Zheng G., Fan Q., Zhang T. Q., et al., 2019. Multistage regulation strategy as a tool to control the vertical displacement of railway tracks placed over the building site of two overlapped shield tunnels. Tunnelling and Underground Space Technology, 83: 282−290. doi: 10.1016/j.tust.2018.09.040
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 录用日期:  2025-06-13
  • 修回日期:  2025-06-10
  • 网络出版日期:  2025-08-12

目录

    /

    返回文章
    返回