• ISSN 1673-5722
  • CN 11-5429/P

地震作用下液化场地高层建筑结构桩筏基础动力响应研究

王佳利 李雨润 邵鼎松 田兴旺 梁艳

王佳利,李雨润,邵鼎松,田兴旺,梁艳,2025. 地震作用下液化场地高层建筑结构桩筏基础动力响应研究. 震灾防御技术,x(x):1−14. doi:10.11899/zzfy20250064. doi: 10.11899/zzfy20250064
引用本文: 王佳利,李雨润,邵鼎松,田兴旺,梁艳,2025. 地震作用下液化场地高层建筑结构桩筏基础动力响应研究. 震灾防御技术,x(x):1−14. doi:10.11899/zzfy20250064. doi: 10.11899/zzfy20250064
Wang Jiali, Li Yurun, Shao Dingsong, Tian Xingwang, Liang Yan. Research on Dynamic Response of Pile-Raft Foundation of High-Rise Building Structures in Liquefiable Sites Under Seismic Action[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250064
Citation: Wang Jiali, Li Yurun, Shao Dingsong, Tian Xingwang, Liang Yan. Research on Dynamic Response of Pile-Raft Foundation of High-Rise Building Structures in Liquefiable Sites Under Seismic Action[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20250064

地震作用下液化场地高层建筑结构桩筏基础动力响应研究

doi: 10.11899/zzfy20250064
基金项目: 基金项目 国家自然科学基金(52278340);河北省自然科学基金(E2023202028)
详细信息
    作者简介:

    王佳利,男,生于2000年。硕士。主要从事桩基抗震方面研究。E-mail:wangjiali621@163.com

    通讯作者:

    李雨润,男,生于1978年。教授,博士生导师。主要从事岩土工程方面的研究与教学工作。E-mail:iemlyr7888@hebut.edu.cn

Research on Dynamic Response of Pile-Raft Foundation of High-Rise Building Structures in Liquefiable Sites Under Seismic Action

  • 摘要: 液化场地下高层建筑桩基抗震性能一直是防灾减灾工程中的热点问题,本文通过开展液化场地-桩筏基础-高层建筑结构体系动力响应大型离心机振动台试验,并基于STKO软件建立三维数值模型,通过对比土体超孔压比、土体加速度、上部建筑结构加速度和桩基弯矩等,验证数值模型的正确性和有效性;基于已验证的数值模型,输入不同峰值加速度的El Centro地震波,探究地震动强度对高层建筑桩筏基础的动力响应影响。结果表明,在相同地震波工况下,随着楼层的升高,楼层峰值加速度、最大位移逐渐增大,同时楼层峰值加速度放大倍数不断增加;在相同楼层处,随着地震动峰值的增加,楼层峰值加速度不断增大,楼层最大位移逐渐增大,但楼层峰值加速度放大倍数不断减小;小震作用下,土体并未发生液化,随着地震波峰值的增加,超孔压比上升的速度也随之加快,且土体超孔压比的波动程度随着地震动峰值的增加而变大;在小震作用下,桩身顶部会出现弯矩较大值,随着地震动峰值的增加,桩身弯矩峰值点位置下移,大震作用下,角桩、边桩及中桩的桩弯矩峰值均出现在液化层与非液化层交界处附近。
  • 图  1  DCIEM-40-300大型土工动力离心机设备

    Figure  1.  DCIEM-40-300 large geodynamic centrifuge equipment

    图  2  试验模型

    Figure  2.  Test model

    图  3  建筑基础平面

    Figure  3.  Building foundation plan

    图  4  高层建筑结构平面

    Figure  4.  The structural plan of high-rise buildings

    图  5  传感器布置

    Figure  5.  Sensor layout

    图  6  0.2 g正弦波加速度时程曲线

    Figure  6.  0.2 g sine wave acceleration time history curve

    图  7  三维数值模型

    Figure  7.  Three-dimensional numerical model

    图  8  不同深度处土体超孔压比时程曲线对比

    Figure  8.  Comparison of time history curves of soil excess pore pressure ratio at different depths

    图  9  不同深度处土体加速度时程曲线对比

    Figure  9.  Comparison of soil acceleration time history curves at different depths

    图  10  筏板及上部建筑各楼层加速度时程曲线对比

    Figure  10.  Comparison of acceleration time-history curves of raft foundation and each floor of the superstructure

    图  11  桩身弯矩包络对比

    Figure  11.  Pile bending moment envelope comparison

    图  12  不同峰值加速度地震波下筏板及各楼层加速度时程曲线

    Figure  12.  The time history curves of raft and floor accelerations under seismic waves with different peak accelerations

    图  13  不同峰值加速度地震波下筏板及各楼层峰值加速度及放大倍数对比

    Figure  13.  Comparison of peak accelerations and amplification factors of raft slabs and each floor under seismic waves with different peak accelerations

    图  14  液化场地与非液化场地建筑第3层AS4和建筑顶部AS7的峰值加速度及放大倍数对比

    Figure  14.  Comparison of peak acceleration and magnification of the third floor AS4 and the top AS7 of the liquefaction site and the non-liquefaction site buildings

    图  15  不同峰值加速度地震波下筏板及各楼层水平位移时程曲线

    Figure  15.  Time-history curves of the horizontal displacement of the raft and each floor under seismic waves with different peak accelerations

    图  16  不同峰值加速度地震波下土体超孔压比时程曲线

    Figure  16.  Time-history curves of soil overpore pressure ratio under seismic waves with different peak accelerations

    图  17  不同峰值加速度地震波下桩身弯矩包络对比

    Figure  17.  Comparison of bending moment envelope of pile under seismic waves with different peak accelerations

    表  1  高层建筑原型基本信息

    Table  1.   High-rise building basic information

    参数数值
    层数6
    层质量/t283.25
    总质量/t1699.5
    各层高度/m5
    结构自振周期/s振型11.42
    振型21.28
    振型31.09
    阻尼比5%
    桩长/m19
    桩数/根9
    筏板尺寸18 m×14 m×1 m
    楼板尺寸15 m×10 m×0.1 m
    下载: 导出CSV

    表  2  离心机模型原型的相似比

    Table  2.   Scaling laws of the centrifuge model to the prototype

    分项内容 相似比(模型/原型) 分项内容 相似比(模型/原型)
    加速度 50∶1 应力 1∶1
    时间 1∶50 应变 1∶1
    长度 1∶50 位移 1∶50
    密度 1∶1 集中力 1∶502
    黏聚力 1∶1 力矩 1∶503
    下载: 导出CSV

    表  3  试验模型基本信息

    Table  3.   Basic information of the test model

    参数层高/cm楼板厚度/cm楼板质量/kg筏板厚度/cm筏板质量/kg
    取值1000.252.325.44
    下载: 导出CSV

    表  4  天津砂物理参数

    Table  4.   Physical parameters of Tianjin sand

    参数 比重 最大孔隙比 最小孔隙比 内摩擦角/(°) 平均粒径/m 不均匀系数
    数值 2.642 0.943 0.603 36 0.00018 1.7
    下载: 导出CSV

    表  5  数值模型土层参数

    Table  5.   Numerical model soil layer parameters

    模型参数 粗砂层 细砂层 粉质黏土层
    密度ρ/(kg·m−3) 2.1×103 2.0×103 1.5×103
    参考剪切模量Gr/kPa 1.3×105 1.1×105 6×104
    参考体积模量Br/kPa 2.6×105 2.4×105 3×105
    摩擦角φ/(°) 37 35 0
    峰值剪应变γmax 0.1 0.1 0.1
    参考围压Pr/kPa 101 101 100
    围压系数n 0.5 0.5 0
    相位转换角φPT/(°) 26 26
    剪缩参数c1 0.013 0.028
    剪缩参数c3 0 0.05
    剪胀参数d1 0.3 0.1
    剪胀参数d3 0 0.05
    屈服面数 20 20 20
    初始孔隙比 0.50 0.65
    黏聚力c/kPa 0 0 37
    下载: 导出CSV

    表  6  构件单元参数

    Table  6.   Numerical model soil layer parameters

    参数 弹性模量E/GPa 剪切模量G/GPa 泊松比ν 密度ρ/(kg·m−3)
    数值 68.9 26.5 0.3 2800
    下载: 导出CSV

    表  7  非液化场地土层参数

    Table  7.   Soil layer parameters of non-liquefiable sites

    模型参数 松砂层 密砂层
    密度ρ/(kg·m−3) 1.5×103 1.8×103
    参考剪切模量Gr/kPa 6×104 1.5×105
    参考体积模量Br/kPa 3×105 7.5×105
    黏聚力c/kPa 37 75
    峰值剪应变γmax 0.1 0.1
    下载: 导出CSV
  • 陈龙伟,刘昊儒,任叶飞等,2024. 2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析. 岩土工程学报,46(7):1541−1548.

    Chen L. W., Liu H. R., Ren Y. F., et al., 2024. In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th, 2023. Chinese Journal of Geotechnical Engineering, 46(7): 1541−1548. (in Chinese)
    崔杰,张征,唐亮等,2021. 液化微倾场地群桩-土动力相互作用p-y曲线特性. 地震工程与工程振动,41(5):154−164.

    Cui J., Zhang Z., Tang L., et al., 2021. p-y curve characteristics of pile group soil dynamic interaction in mildly inclined liquefiable ground. Earthquake Engineering and Engineering Dynamics, 41(5): 154−164. (in Chinese)
    丁剑霆,姜淑珍,包峰,2006. 唐山地震桥梁震害回顾. 世界地震工程,22(1):68−71.

    Ding J. T., Jiang S. Z., Bao F., 2006. Review of Seismic damage to bridges in Tangshan earthquake. World Earthquake Engineering, 22(1): 68−71. (in Chinese)
    冯忠居,段久琴,张聪等,2024. 液化场地大直径变截面单桩动力响应研究. 湖南大学学报(自然科学版),51(5):56−67.

    Feng Z. J., Duan J. Q., Zhang C., et al., 2024. Study on dynamic response of large diameter variable cross-section single pile in liquefaction site. Journal of Hunan University (Natural Sciences), 51(5): 56−67. (in Chinese)
    李雨润,胡森,邹泽等,2020. 对称斜群桩侧向动力响应及p-y曲线规律对比试验研究. 自然灾害学报,29(2):10−21.

    Li Y. R., Hu S., Zou Z., et al., 2020. Comparative experimental research on lateral dynamic response and p-y curve rule of symmetrical vertical and batter pile groups. Journal of Natural Disasters, 29(2): 10−21. (in Chinese)
    李雨润,刘毅,梁旭华,2024. 液化场地-群桩-上部结构动力特性研究综述. 河北工业大学学报,53(1):74−80.

    Li Y. R., Liu Y., Liang X. H., 2024. Review on dynamic characteristics of liquefied site-pile group-superstructure. Journal of Hebei University of Technology, 53(1): 74−80. (in Chinese)
    唐亮,满孝峰,丛晟亦等,2023. 液化场地桩基地震失效机制:现状与挑战. 岩土力学,44(10):2979−2996.

    Tang L., Man X. F., Cong S. Y., et al., 2023. Failure mechanism of pile foundations in liquefiable soils under seismic loading: status and challenge. Rock and Soil Mechanics, 44(10): 2979−2996. (in Chinese)
    咸甘玲,兰景岩,潘旦光等,2023. 桩顶荷载对软土地基-群桩基础动力相互作用的影响与机理分析. 岩土工程学报,45(S2):67−72.

    Xian G. L., Lan J. Y., Pan D. G., et al., 2023. Influences and mechanisms of loads at pile top on dynamic interaction between soft soil-foundation with pile groups. Chinese Journal of Geotechnical Engineering, 45(S2): 67−72. (in Chinese)
    咸甘玲,兰景岩,李哲瀚,2024. 软土地基桩基础抗震研究的若干进展与展望. 应用力学学报,41(4):729−741.

    Xian G. L., Lan J. Y., Li Z. H., 2024. Advances and prospects of seismic research on pile foundations in soft soil. Chinese Journal of Applied Mechanics, 41(4): 729−741. (in Chinese)
    许成顺,豆鹏飞,杜修力等,2019. 液化场地-群桩基础-结构体系动力响应分析−−大型振动台模型试验研究. 岩土工程学报,41(12):2173−2181.

    Xu C. S., Dou P. F., Du X. L., et al., 2019. Dynamic response analysis of liquefied site-pile group foundation-structure system−large-scale shaking table model test. Chinese Journal of Geotechnical Engineering, 41(12): 2173−2181. (in Chinese)
    Asgari A., Ranjbar F., Bagheri M., 2025. Seismic resilience of pile groups to lateral spreading in liquefiable soils: 3D parallel finite element modeling. Structures, 74: 108578. doi: 10.1016/j.istruc.2025.108578
    Deb P., Pal S. K., 2019. Numerical analysis of piled raft foundation under combined vertical and lateral loading. Ocean Engineering, 190: 106431. doi: 10.1016/j.oceaneng.2019.106431
    Haeri S. M., Rajabigol M., Salaripour S., et al., 2023. Effects of physical modeling boundary conditions on the responses of 3 × 3 pile groups to liquefaction induced lateral spreading. Bulletin of Earthquake Engineering, 21(5): 2469−2502. doi: 10.1007/s10518-023-01648-4
    Hussein A. F., El Naggar M. H., 2021. Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils. Soil Dynamics and Earthquake Engineering, 149: 106853. doi: 10.1016/j.soildyn.2021.106853
    Li L. C., Liu H., Wu W. B., et al., 2021. Investigation on the behavior of hybrid pile foundation and its surrounding soil during cyclic lateral loading. Ocean Engineering, 240: 110006. doi: 10.1016/j.oceaneng.2021.110006
    Qin W., Ye C., Gao J. Y., et al., 2025. Pore water pressure of clay soil around large-diameter open-ended thin-walled pile (LOTP) during impact penetration. Computers and Geotechnics, 180: 107065. doi: 10.1016/j.compgeo.2025.107065
    Tamura S., Ohno Y., Shibata K., et al., 2021. E-Defense shaking test and pushover analyses for lateral pile behavior in a group considering soil deformation in vicinity of piles. Soil Dynamics and Earthquake Engineering, 142: 106529. doi: 10.1016/j.soildyn.2020.106529
    Wang B. L., Cui C. Y., Xu C. S., et al., 2024. A novel analytical solution for horizontal vibration of partially embedded offshore piles considering the distribution effect of wave loads. Ocean Engineering, 307: 118179. doi: 10.1016/j.oceaneng.2024.118179
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  18
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 录用日期:  2025-06-04
  • 修回日期:  2025-05-23
  • 网络出版日期:  2025-08-12

目录

    /

    返回文章
    返回