Improvement of the Newmark Displacement Model and Coseismic Landslides Hazard Assessment
-
摘要: 基于Newmark累积位移模型的区域地震滑坡危险性评估是目前国内外主流的定量评估方法之一,而Newmark位移模型是应用该方法的关键。本文利用2008年汶川MS8.0地震强震动数据,优化改进并建立了基于临界加速度、Arias 强度参数的线性和二次函数2种形式的Newmark位移模型,同时与已有位移预测模型在拟合优度上进行对比。利用2013年芦山MS7.0地震强震动数据进行对比分析,验证了改进模型的精度和有效性。基于改进模型及前人模型,开展了2017年九寨沟MS7.0地震诱发同震滑坡危险性评估分析,预测位移与实际地震滑坡分布对比显示,改进模型的ROC曲线成功率(SAUC=0.913)略高于前人模型,表明其对地震滑坡高危险区的评估效果更佳,可为青藏高原东缘等类似地区的同震滑坡识别提供参考。Abstract: Regional seismic landslide hazard assessment based on the Newmark cumulative displacement model is one of the mainstream assessment methods at home and abroad. The Newmark displacement prediction model is the key to applying this method. In this paper, two forms of Newmark displacement models (linear and quadratic functions) were established with the strong motion data of the 2008 Wenchuan MS8.0 earthquake, based on the critical acceleration and Arias intensity parameters. By comparing with the fitting goodness of previous displacement prediction models, it is shown that the proposed models in this paper have great improvement in the displacement prediction ability. Using the strong motion data of the 2013 Lushan MS7.0 earthquak, the accuracy and validity of the proposed models were verified. Based on the improved models and previous models, a comparative analysis of the seismic landslides hazard assessment in the 2017 MS7.0 Jiuzhaigou earthquake was carried out. By comparing the predicted displacements with the actual distribution of earthquake-induced landslides, the results of the ROC curve comparison show that the success rate AUC of earthquake-induced landslides in proposed models is 0.913, which is higher than that of other models. Its identification effect on high hazardareas of earthquake-induced landslides is better. The proposed models provide enhanced theoretical support for coseismic landslide identification in analogous regions such as the eastern margin of the Qinghai-Tibet Plateau.
-
Key words:
- Newmark /
- Critical acceleration /
- Arias intensity /
- Seismic landslide /
- Wenchuan earthquake /
- Jiuzhaigou earthquake
-
图 14 基于徐光兴等(2012)模型的地震滑坡危险性评估结果
Figure 14. Seismic landslide hazard assessment based on Xu model (Xu et al.,2012)
图 15 徐光兴等(2012)模型与本文二次函数模型效果对比
Figure 15. Comparison between the result of Xu model (Xu et al.,2012) and our quadratic model
表 1 基于Arias强度和amax的主流Newmark累积位移预测模型
Table 1. The mainstream Newmark displacement prediction models based on Arias intensity and amax
序号 位移预测模型 参考文献 1 $ \mathrm{l}\mathrm{o}\mathrm{g}{D}_{n}=1.460\mathrm{l}\mathrm{o}\mathrm{g}{I}_{\mathrm{a}}-6.642{a}_{c}+1.546\pm 0.409 $ Jibson(1993) 2 $ \mathrm{l}\mathrm{o}\mathrm{g}{D}_{n}=1.521 {\mathrm{log}}{I}_{\mathrm{a}}-1.1993 {\mathrm{log}}{a}_{c}-1.546\pm 0.375 $ Jibson等(2000) 3 $ {\mathrm{log}}{D}_{n}=0.194+{\mathrm{log}}\left[{\left(1-\dfrac{{a}_{\mathrm{c}}}{{a}_{\mathrm{m}\mathrm{a}\mathrm{x}}}\right)}^{2.262}{\left(\dfrac{{a}_{\mathrm{c}}}{{a}_{\mathrm{m}\mathrm{a}\mathrm{x}}}\right)}^{-1.754}\right]\pm 0.371 $ 徐光兴等(2012) 4 $ {\mathrm{log}}{D}_{n}=0.405 {\mathrm{log}}{I}_{\mathrm{a}}-4.756\dfrac{{a}_{\mathrm{c}}}{{a}_{\mathrm{m}\mathrm{a}\mathrm{x}}}+2.276\pm 0.423 $ 5 $ {\mathrm{log}}{D}_{n}=1.147 {\mathrm{log}}{I}_{\mathrm{a}}-13.664{a}_{c}+9.673{a}_{c}{\mathrm{log}}{I}_{\mathrm{a}}+13.96 $ Yuan等(2016) 表 2 不同临界加速度时logIa-logDn的线性及二次函数关系R2值
Table 2. R2 values of the linear and quadratic relationships between logIa - logDn for different ac
ac 函数关系 R2 ac 函数关系 R2 线性函数 二次函数 线性函数 二次函数 0.01g 0.86 0.92 0.1g 0.81 0.82 0.02g 0.88 0.94 0.12g 0.85 0.85 0.03g 0.87 0.94 0.14g 0.84 0.84 0.04g 0.86 0.93 0.16g 0.79 0.79 0.05g 0.88 0.93 0.18g 0.81 0.83 0.06g 0.88 0.92 0.20g 0.78 0.79 0.07g 0.87 0.90 0.30g 0.65 0.66 0.08g 0.86 0.89 0.40g 0.70 0.70 0.09g 0.84 0.86 平均 0.83 0.85 表 3 不同Arias强度Ia时ac-logDn线性关系R2值
Table 3. R2 values of the linear relationship between ac-logDn for different Ia
Ia/(m·s−1) R2 Ia/(m·s−1) R2 Ia/(m·s−1) R2 Ia/(m·s−1) R2 Ia/(m·s−1) R2 0.830 0.976 1.251 0.994 0.286 0.999 0.627 0.992 5.037 0.993 0.467 0.982 0.929 1 0.141 0.997 1.104 0.956 3.936 0.996 0.075 0.993 0.667 0.986 1.862 0.915 0.124 0.993 2.583 0.996 0.842 0.988 0.629 0.992 1.291 0.996 0.188 0.994 4.189 0.979 1.073 0.999 0.206 0.995 0.618 0.991 0.249 0.999 1.275 0.943 0.282 0.999 0.199 0.983 0.178 0.973 0.875 0.991 4.134 0.997 0.309 0.999 0.079 0.999 0.137 0.998 0.972 0.943 4.056 0.997 0.151 0.997 0.301 0.993 0.057 0.995 0.176 0.993 2.350 0.987 0.469 0.993 0.410 0.998 0.420 0.961 0.134 0.997 0.556 0.977 0.116 0.999 0.280 0.968 0.490 0.989 0.134 1 0.723 0.993 1.907 0.966 2.735 0.999 0.124 0.978 0.845 0.975 0.190 0.995 1.785 0.994 3.378 0.995 0.449 0.965 6.537 0.949 0.909 0.985 0.627 0.993 1.625 0.997 0.425 0.969 4.854 0.996 0.773 1 16.651 0.984 3.222 0.980 0.082 0.997 3.214 0.993 0.150 1 16.425 0.981 4.502 0.968 0.574 0.998 5.080 0.994 2.309 0.98 7.154 0.993 0.683 0.996 0.671 0.983 5.501 0.997 2.461 0.912 1.277 0.996 3.344 0.994 0.152 0.999 7.385 0.996 0.289 0.999 1.323 0.997 3.346 0.996 8.575 0.990 1.393 0.996 1.815 0.984 0.151 0.998 0.055 0.997 4.199 0.981 1.717 0.993 1.926 0.991 1.437 0.995 0.878 0.992 3.586 0.991 1.497 0.996 0.554 0.917 0.414 1 0.752 0.998 11.241 0.995 11.812 0.984 0.344 0.995 1.202 0.985 0.382 0.992 6.935 0.986 11.326 0.973 0.530 0.996 0.976 0.997 0.361 0.999 1.379 0.990 4.591 0.987 0.465 0.996 0.104 1 0.319 0.999 2.813 0.988 0.550 0.988 0.123 0.997 4.032 0.981 0.142 0.994 3.127 0.997 0.150 0.999 0.100 0.992 2.565 0.967 0.372 0.998 1.185 0.981 0.655 0.985 0.045 0.997 0.719 0.982 0.365 0.994 13.227 0.969 0.617 0.992 0.850 0.988 0.226 0.996 0.251 0.998 10.768 0.991 0.185 0.989 1.232 0.986 0.225 0.993 0.607 0.994 10.146 0.992 1.662 0.998 0.527 0.997 0.066 0.998 0.639 0.996 0.378 0.963 1.502 0.943 0.443 0.986 0.383 0.993 0.071 0.959 0.360 0.998 0.264 0.994 0.389 0.995 0.311 0.992 1.203 0.998 0.128 0.998 5.105 0.973 0.164 0.974 0.119 0.999 表 4 工程岩土体物理力学参数表
Table 4. Physical and mechanical parameters of engineering rock and soil mass grouping
主要岩性组成 粘聚力/kPa 内摩擦角/(°) 重度/(kN·m−3) 石英砂岩等 37 39 24 白云岩、灰岩等 34 36 23 砂岩、粉砂岩 33 35 24 板岩 27 32 21 砾石、砂土和黏土层等 17 20 17 -
李伟, 俞言祥, 肖亮, 2017. 阿里亚斯强度衰减关系分析. 地震学报, 39(6): 921−929.Li W., Yu Y. X., Xiao L., 2017. Attenuation relationship of Arias intensity. Acta Seismologica Sinica, 39(6): 921−929. (in Chinese) 刘甲美, 王涛, 石菊松等, 2017. 四川九寨沟MS7.0级地震滑坡应急快速评估. 地质力学学报, 23(5): 639−645. doi: 10.3969/j.issn.1006-6616.2017.05.001Liu J. M., Wang T., Shi J. S., et al., 2017. Emergency rapid assessment of landslides induced by the Jiuzhaigou MS7.0 earthquake, Sichuan, China. Journal of Geomechanics, 23(5): 639−645. (in Chinese) doi: 10.3969/j.issn.1006-6616.2017.05.001 刘甲美, 王涛, 石菊松等, 2018. 基于不同位移预测模型的地震滑坡危险性评估研究−以天水地区为例. 地质力学学报, 24(1): 87−95. doi: 10.12090/j.issn.1006-6616.2018.24.01.010Liu J. M., Wang T., Shi J. S., et al., 2018. The influence of different Newmark displacement models on seismic landslide hazard assessment: a case study of Tianshui area, China. Journal of Geomechanics, 24(1): 87−95. (in Chinese) doi: 10.12090/j.issn.1006-6616.2018.24.01.010 马思远, 许冲, 王涛等, 2019. 应用2类Newmark简易模型进行2008年汶川地震滑坡评估. 地震地质, 41(3): 774−788.Ma S. Y., Xu C., Wang T., et al., 2019. Application of two simplified Newmark models to the assessment of landslides triggered by the 2008 Wenchuan earthquake. Seismology and Geology, 41(3): 774−788. (in Chinese) 王涛, 吴树仁, 石菊松等, 2013. 基于简化Newmark位移模型的区域地震滑坡危险性快速评估−以汶川MS8.0级地震为例. 工程地质学报, 21(1): 16−24. doi: 10.3969/j.issn.1004-9665.2013.01.003Wang T., Wu S. R., Shi J. S., et al., 2013. Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model: Wenchuan MS8.0 earthquake. Journal of Engineering Geology, 21(1): 16−24. (in Chinese) doi: 10.3969/j.issn.1004-9665.2013.01.003 王涛, 吴树仁, 石菊松等, 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨. 工程地质学报, 23(1): 93−104.Wang T., Wu S. R., Shi J. S., et al., 2015. Concepts and mechanical assessment method for seismic landslide hazard: a review. Journal of Engineering Geology, 23(1): 93−104. (in Chinese) 王涛, 刘甲美, 栗泽桐等, 2021. 中国地震滑坡危险性评估及其对国土空间规划的影响研究. 中国地质, 48(1): 21−39.Wang T., Liu J. M., Li Z. T., et al., 2021. Seismic landslide hazard assessment of China and its impact on national territory spatial planning. Geology in China, 48(1): 21−39. (in Chinese) 王秀英, 聂高众, 王松, 2011a. 汶川地震诱发滑坡的地震动加速度评判标准. 地震学报, 33(1): 82−90.Wang X. Y., Nie G. Z., Wang S., 2011a. Ground motion acceleration criterion for judging landslide induced by the 2008 Wenchuan earthquake. Acta Seismologica Sinica, 33(1): 82−90. (in Chinese) 王秀英, 王登伟, 2011b. 四川汶川地震诱发滑坡与峰值速度的关系. 地质通报, 30(1): 159−165.Wang X. Y., Wang D. W., 2011b. Relationships between the Wenchuan earthquake-induced landslide and peak ground velocity, Sichuan, China. Geological Bulletin of China, 30(1): 159−165. (in Chinese) 谢俊举, 温增平, 高孟潭, 2013. 利用强震数据获取汶川地震近断层地面永久位移. 地震学报, 35(3): 369−379.Xie J. J., Wen Z. P., Gao M. T., 2013. Recovery of co-seismic deformation from strong motion records during the Wenchuan earthquake. Acta Seismologica Sinica, 35(3): 369−379. (in Chinese) 许冲, 王世元, 徐锡伟等, 2018. 2017年8月8日四川省九寨沟MS7.0地震触发滑坡全景. 地震地质, 40(1): 232−260. doi: 10.3969/j.issn.0253-4967.2018.01.017Xu C., Wang S. Y., Xu X. W., et al., 2018. A panorama of landslides triggered by the 8 August 2017 Jiuzhaigou, Sichuan MS7.0 earthquake. Seismology and Geology, 40(1): 232−260. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.01.017 徐光兴, 姚令侃, 李朝红等, 2012. 基于汶川地震强震动记录的边坡永久位移预测模型. 岩土工程学报, 34(6): 1131−1136.Xu G. X., Yao L. K., Li C. H., et al., 2012. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131−1136. (in Chinese) 殷跃平, 潘桂棠, 刘宇平等, 2009. 汶川地震地质与滑坡灾害概论. 北京: 地质出版社.Yin Y. P., Pan G. T., Liu Y. P., 2009. Great Wenchuan earthquake: seismogeology and landslide hazards. Beijing: Geological Publishing House. (in Chinese) 于海英, 杨剑, 王栋等, 2008. 汶川8.0级地震强震动特征初步分析. 震灾防御技术, 3(4): 321−336. doi: 10.3969/j.issn.1673-5722.2008.04.001Yu H. Y., Yang J., Wang D., 2008. The preliminary analysis of strong ground motion characteristics from the MS8.0 Wenchuan earthquake, China. Technology for Earthquake Disaster Prevention, 3(4): 321−336. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.04.001 俞言祥, 汪素云, 2004. 青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系. 地震学报, 26(6): 591−600. doi: 10.3321/j.issn:0253-3782.2004.06.004Yu Y. X., Wang S. Y., 2004. Attenuation relations for horizontal peak ground acceleration and response spectrum in northeastern Tibetan plateau region. Acta Seismologica Sinica, 26(6): 591−600. (in Chinese) doi: 10.3321/j.issn:0253-3782.2004.06.004 张斌, 俞言祥, 李小军等. 2021. 西南地区水平向峰值速度、峰值位移衰减关系研究. 地球物理学报, 64(8): 2733−2748.Zhang B., Yu Y. X., Li X. J., et al., 2021. Ground motion attenuation relationship of horizontal component of PGV and PGD in southwest China. Chinese Journal of Geophysics, 64(8): 2733−2748. (in Chinese) 张帅, 孙萍, 邵铁全等, 2016. 甘肃天水黄土梁峁区强震诱发滑坡特征研究. 工程地质学报, 24(4): 519−526.Zhang S., Sun P., Shao T. Q., et al., 2016. Earthquake-triggered landslides in Tianshui loess hilly region, Gansu province, China. Journal of Engineering Geology, 24(4): 519−526. (in Chinese) 张迎宾, 柳静, 唐云波等. 2021. 考虑边坡地形效应的地震动力响应分析. 地震工程学报, 43(1): 142−153.Zhang Y. B., Liu J., Tang Y. B., 2021. Dynamic response analysis of seismic slopes considering topographic effect. China Earthquake Engineering Journal, 43(1): 142−153. (in Chinese) 赵海军, 马凤山, 李志清等, 2022. 基于Newmark模型的概率地震滑坡危险性模型参数优化与应用: 以鲁甸地震区为例. 地球科学, 47(12): 4401−4416.Zhao H. J., Ma F. S., Li Z. Q., et al., 2022. Optimization of parameters and application of probabilistic seismic landslide hazard analysis model based on Newmark displacement model: a case study in Ludian earthquake area. Earth Science, 47(12): 4401−4416. (in Chinese) Ambraseys N. N., Menu J. M., 1988. Earthquake-induced ground displacements. Earthquake Engineering & Structural Dynamics, 16(7): 985−1006. Corominas J., Van Westen C., Frattini P., et al., 2014. Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2): 209−263. Hsieh S. Y., Lee C. T., 2011. Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Engineering Geology, 122(1-2): 34−42. doi: 10.1016/j.enggeo.2010.12.006 Jibson R. W., 1993. Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. In: Proceedings of Transportation Research Record TRB Annual Meeting. Washington: National Research Council, 9−17. Jibson R. W., Harp E. L., Michael J. A., 2000. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3-4): 271−289. doi: 10.1016/S0013-7952(00)00039-9 Jibson R. W., 2007. Regression models for estimating coseismic landslide displacement. Engineering Geology, 91(2-4): 209−218. doi: 10.1016/j.enggeo.2007.01.013 Jin J. L., Wang Y., Gao D., et al., 2018. New evaluation models of Newmark displacement for southwest China. Bulletin of the Seismological Society of America, 108(4): 2221−2236. doi: 10.1785/0120170349 Li X. J., Liu L., Wang Y. S., et al., 2010. Analysis of horizontal strong-motion attenuation in the great 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2440−2449. doi: 10.1785/0120090245 Liu J. M., Wang T., Wu S. R., et al., 2016. New empirical relationships between Arias intensity and peak ground acceleration. Bulletin of the Seismological Society of America, 106(5): 2168−2176. doi: 10.1785/0120150366 Liu J. M., Zhang B., Zhao X. D., 2024. Empirical relationships between Arias Intensity and peak ground acceleration for western China. Frontiers in Earth Science, 12: 1434194. doi: 10.3389/feart.2024.1434194 Rathje E. M., Saygili, G., 2009. Probabilistic assessment of earthquake-induced sliding displacements of natural slopes. Bulletin of the New Zealand Society for Earthquake Engineering, 42(1): 18−27. doi: 10.5459/bnzsee.42.1.18-27 Saygili G., Rathje E. M., 2008. Empirical predictive models for earthquake induced sliding displacements of slopes. Journal of Geotechnical and Geoenvironmental Engineering, 134(6): 790−803. doi: 10.1061/(ASCE)1090-0241(2008)134:6(790) Wasowski J., Keefer D. K., Lee C. T., 2011. Toward the next generation of research on earthquake-induced landslides: current issues and future challenges. Engineering Geology, 122(1-2): 1−8. doi: 10.1016/j.enggeo.2011.06.001 Xi C. J., Tanyas H., Lombardo L., et al., 2024. Estimating weakening on hillslopes caused by strong earthquakes. Communications Earth & Environment, 5(1): 81. Yuan R. M., Deng Q. H., Cunningham D., et al., 2016. Newmark displacement model for landslides induced by the 2013 MS7.0 Lushan earthquake, China. Frontiers in Earth Science, 10(4): 740−750. doi: 10.1007/s11707-015-0547-y Zang M. D., Qi S. W., Zou Y., et al., 2020. An improved method of Newmark analysis for mapping hazards of coseismic landslides. Natural Hazards and Earth System Sciences, 20(3): 713−726. doi: 10.5194/nhess-20-713-2020 Zhang B., Yu Y. X., Li X. J., et al., 2022. Ground motion prediction equation for the average horizontal component of PGA, PGV, and 5% damped acceleration response spectra at periods ranging from 0.033 to 8.0s in southwest China. Soil Dynamics and Earthquake Engineering, 159: 107297. doi: 10.1016/j.soildyn.2022.107297 Zhang B., Li X. J., Yu Y. X., et al., 2023. A new ground-motion model to predict horizontal PGA, PGV, and spectral acceleration for small-to-moderate earthquakes in the capital circle region of China. Journal of Asian Earth Sciences, 257: 105853. doi: 10.1016/j.jseaes.2023.105853 Zhao D. Z., Qu C. Y., Shan X. J., et al., 2018. InSAR and GPS derived coseismic deformation and fault model of the 2017 MS7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block. Tectonophysics, 726: 86−99. doi: 10.1016/j.tecto.2018.01.026 -