• ISSN 1673-5722
  • CN 11-5429/P

2024年新疆乌什MS7.1地震序列震源机制及发震断层特征分析

王天哲 江国明 张贵宾 张刚 祁善博 许鑫 邓明文

王天哲,江国明,张贵宾,张刚,祁善博,许鑫,邓明文,2025. 2024年新疆乌什MS7.1地震序列震源机制及发震断层特征分析. 震灾防御技术,20(4):1−12. doi:10.11899/zzfy20240509. doi: 10.11899/zzfy20240509
引用本文: 王天哲,江国明,张贵宾,张刚,祁善博,许鑫,邓明文,2025. 2024年新疆乌什MS7.1地震序列震源机制及发震断层特征分析. 震灾防御技术,20(4):1−12. doi:10.11899/zzfy20240509. doi: 10.11899/zzfy20240509
Wang Tianzhe, Jiang Guoming, Zhang Guibin, Zhang Gang, Qi Shanbo, Xu Xin, Deng Mingwen. Analysis of Focal Mechanisms and Fault Characteristics of the 2024 MS7.1 Earthquake Sequence in Wushi, Xinjiang[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240509
Citation: Wang Tianzhe, Jiang Guoming, Zhang Guibin, Zhang Gang, Qi Shanbo, Xu Xin, Deng Mingwen. Analysis of Focal Mechanisms and Fault Characteristics of the 2024 MS7.1 Earthquake Sequence in Wushi, Xinjiang[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240509

2024年新疆乌什MS7.1地震序列震源机制及发震断层特征分析

doi: 10.11899/zzfy20240509
基金项目: 国家自然科学基金面上项目(41630320);地球深部探测与矿产资源勘查国家科技重大项目(2024 ZD1000100)
详细信息
    作者简介:

    王天哲,男,生于1997年生。硕士研究生。主要从事深度学习震相识别研究。E-mail:wtz18109232289@163.com

    通讯作者:

    江国明,男,生于1979年出。教授,博士生导师。主要从事天然地震层析成像和地震高精度定位的研究与教学工作。E-mail:jiang_guoming@cugb.edu.cn

Analysis of Focal Mechanisms and Fault Characteristics of the 2024 MS7.1 Earthquake Sequence in Wushi, Xinjiang

Funds: Zoback M. L., 1992. First- and second-order patterns of stress in the lithosphere: the world stress map project. Journal of Geophysical Research: Solid Earth, 97(B8): 11703—11728.
  • 摘要: 本文为研究2024年新疆乌什MS7.1地震的发震构造及应力场特征,收集了主震发生后1月23日至2月1日M≥3.5地震事件的P波初动极性符号,采用初至波极性约束的震源机制反演方法,得到68组震源破裂参数,基于应变花分类体系,建立震源机制类型与区域应力场的映射关系,发现尽管震源机制类型多样,但逆冲类事件占比超过半数,表明此次地震序列是以逆冲破裂为主。随后,系统整合本次地震与历史震源机制解,并通过网格搜索法和遗传算法进行应力张量反演,结果显示研究区呈近SN向挤压、NEE向近垂直拉张。进一步模拟应力体系与震源机制之间的关系表明,此次地震沿最优节面破裂,为后续发震机制与地球动力学研究提供了参考。
  • 图  1  研究区地形特征、震源机制解译及观测台站布局

    Figure  1.  Topographic features, focal mechanism interpretation and observational station deployment in the study area

    图  2  主震、余震初动极性在震源球上投影

    Figure  2.  Initial-motion polarities of the main shock and the aftershock projected onto the focal sphere

    图  3  2024乌什MS7.1地震序列震源机制类型划分结果图

    Figure  3.  Schematic diagram showing the source mechanism type division of Wushi MS7.1 earthquake sequence

    图  4  乌什MS7.1地震震源区构造应力场结果

    Figure  4.  The tectonic stress field in the source area of the Wushi MS7.1 earthquake

    图  5  震源机制及其节面上的相对剪应力和正应力示意图

    Figure  5.  Schematic diagram showing the source mechanism and its relative shear stress and normal stress

    表  1  计算震源机制解所用的速度模型

    Table  1.   Velocity model used in for calculating focal mechanism solution

    层号 层速度Vp/(km·s−1) 层厚/km
    1 3.40 0.30
    2 6.10 22.79
    3 6.30 20.19
    4 7.0 8.81
    5 8.12
    下载: 导出CSV

    表  2  基于P波初动极性的震源机制解情况

    Table  2.   Solution of source mechanism by P wave first motion polarity


    发震时间 震中位置 震源
    深度
    /km

    节面1 节面2 P T B 矛盾
    P波
    初动数
    年-月-日 时:分:秒 经度/
    (°E)
    纬度/
    (°N)
    走向/
    (°)
    倾角/
    (°)
    滑动
    角/(°)
    走向/
    (°)
    倾角/
    (°)
    滑动
    角/(°)
    方位
    角/(°)
    倾伏
    角/(°)
    方位
    角/(°)
    倾伏
    角/(°)
    方位
    角/(°)
    倾伏
    角/(°)
    1 2024-02-01 3:56:15 78.66 41.18 1.0 3.5 324 71 144 67 56 23 18 10 281 38 120 50 0.10 10
    2 2024-02-01 3:21:26 78.74 41.26 16.0 4.4 83 81 110 197 22 26 157 33 16 50 260 20 0.00 11
    3 2024-01-30 11:52:34 78.57 41.07 18.0 4.1 70 44 158 177 75 48 297 19 46 44 190 40 0.00 8
    4 2024-01-30 9:44:56 78.61 41.14 17.0 4.3 330 80 178 60 88 10 195 6 285 8 70 80 0.11 9
    5 2024-01-30 7:30:52 78.56 41.12 7.0 3.9 62 41 105 222 51 77 321 5 77 79 230 10 0.22 9
    6 2024-01-30 7:17:05 78.59 41.14 1.0 4.3 130 85 −171 40 81 −5 355 10 265 3 160 80 0.07 14
    7 2024-01-30 6:27:39 78.67 41.14 5.0 5.6 274 36 132 46 65 64 154 16 276 62 57 23 0.07 56
    8 2024-01-30 5:03:21 78.75 41.19 16.0 4.2 328 51 103 128 41 75 49 5 293 79 140 10 0.00 8
    9 2024-01-29 12:05:20 78.61 41.12 5.0 3.8 270 10 90 90 80 90 180 35 0 55 270 0 0.20 10
    10 2024-01-28 18:07:55 80.76 42.17 6.0 3.8 170 80 180 260 90 10 35 7 125 7 260 80 0.00 11
    11 2024-01-28 17:52:14 78.55 41.12 3.0 4.3 272 44 120 54 53 65 162 5 264 69 70 20 0.21 19
    12 2024-01-27 17:03:04 78.68 41.16 14.0 5.1 237 74 −103 96 20 −53 130 59 337 28 241 12 0.05 37
    13 2024-01-27 13:29:25 80.33 42.30 6.0 4.0 321 41 139 84 64 56 198 13 308 57 100 30 0.21 14
    14 2024-01-27 8:37:19 78.46 41.04 5.0 3.9 150 90 90 240 0 0 240 45 60 45 150 0 0.11 9
    15 2024-01-27 0:00:30 78.57 41.13 4.0 3.9 140 90 0 50 90 180 95 0 185 0 0 90 0.12 8
    16 2024-01-26 20:05:36 78.82 41.13 13.0 4.4 175 81 −120 71 31 −17 54 45 289 30 180 30 0.21 19
    17 2024-01-26 19:40:44 78.76 41.12 10.0 4.6 100 61 88 285 30 94 192 15 4 74 101 2 0.07 14
    18 2024-01-26 18:36:47 78.76 41.10 2.0 3.9 242 44 120 24 53 65 132 5 234 69 40 20 0.00 8
    19 2024-01-26 18:16:47 78.75 41.18 12.0 4.3 163 81 110 277 22 26 237 33 96 50 340 20 0.18 11
    20 2024-01-26 16:17:58 78.50 41.12 7.0 4.2 348 61 −152 243 66 −33 203 40 296 3 30 50 0.18 22
    21 2024-01-26 14:54:46 78.57 41.20 10.0 3.6 160 84 172 250 82 6 205 1 115 10 300 80 0.11 9
    22 2024-01-26 10:26:05 78.75 41.23 9.0 4.2 190 0 0 100 90 90 190 45 10 45 280 0 0.17 12
    23 2024-01-26 9:55:13 78.57 41.10 10.0 4.5 72 47 82 264 44 99 168 2 275 84 78 6 0.14 29
    24 2024-01-26 9:14:32 78.54 41.11 9.0 4.0 98 51 103 258 41 75 179 5 63 79 270 10 0.22 9
    25 2024-01-26 8:17:31 78.62 41.10 5.0 4.2 120 90 100 210 10 0 200 44 40 44 300 10 0.09 11
    26 2024-01-26 6:38:09 78.57 41.11 10.0 4.7 72 66 67 299 33 131 179 18 306 62 82 21 0.16 19
    27 2024-01-26 5:11:06 78.59 41.12 16.0 4.3 120 90 100 210 10 0 200 44 40 44 300 10 0.10 21
    28 2024-01-26 4:01:28 78.84 41.30 16.0 5.5 303 52 107 97 41 69 21 6 269 76 112 13 0.05 73
    29 2024-01-26 3:21:42 77.49 40.38 6.0 4.2 140 67 134 252 48 31 200 11 97 48 300 40 0.14 14
    30 2024-01-25 17:29:49 78.92 41.36 5.0 3.9 110 90 0 20 90 180 65 0 155 0 0 90 0.00 8
    31 2024-01-25 16:42:49 78.57 41.12 8.0 3.8 10 90 90 100 0 0 100 45 280 45 10 0 0.11 9
    32 2024-01-25 16:14:48 78.91 41.34 8.0 4.3 288 75 167 22 77 16 155 2 245 20 60 70 0.14 14
    33 2024-01-25 12:59:21 78.72 41.26 10.0 4.3 150 85 171 240 81 5 195 3 105 10 300 80 0.31 13
    34 2024-01-25 9:43:48 78.64 41.08 12.0 4.5 126 77 142 225 53 16 180 16 79 36 290 50 0.00 13
    35 2024-01-25 9:24:33 78.64 41.08 9.0 5.2 183 81 10 92 80 170 318 1 48 14 225 76 0.07 28
    36 2024-01-25 9:13:35 78.63 41.05 7.0 4.0 290 84 −172 200 82 −6 155 10 65 1 330 80 0.08 12
    37 2024-01-25 6:21:47 78.57 41.09 4.0 5.3 51 66 100 206 26 68 133 21 340 67 226 9 0.06 53
    38 2024-01-25 4:35:08 78.81 41.24 10.0 4.6 73 69 67 303 31 135 180 20 310 60 82 21 0.03 29
    39 2024-01-25 4:05:02 78.54 41.02 7.0 4.8 40 55 67 257 41 119 146 7 257 70 54 19 0.13 23
    40 2024-01-25 3:59:55 78.65 41.07 8.0 4.0 150 87 171 240 81 3 195 4 105 9 310 80 0.08 13
    41 2024-01-25 2:45:16 78.83 41.27 15.0 4.2 160 90 90 250 0 0 250 45 70 45 160 0 0.11 9
    42 2024-01-25 0:20:13 78.60 41.08 10.0 3.8 160 90 90 250 0 0 250 45 70 45 160 0 0.00 9
    43 2024-01-24 17:43:22 78.55 41.13 10.0 4.0 72 61 152 177 66 33 304 3 37 40 210 50 0.14 14
    44 2024-01-24 10:54:03 78.56 41.07 10.0 4.2 130 90 90 220 0 0 220 45 40 45 130 0 0.14 14
    45 2024-01-24 9:35:18 78.78 41.33 17.0 4.3 46 61 102 203 31 71 127 15 343 72 220 10 0.08 12
    46 2024-01-24 7:50:05 78.48 41.14 9.0 4.2 160 90 90 250 0 0 250 45 70 45 160 0 0.21 19
    47 2024-01-24 7:27:45 78.87 41.25 20.0 4.0 272 80 100 45 14 45 353 34 194 54 90 10 0.15 13
    48 2024-01-24 5:49:46 78.62 41.14 6.0 3.6 140 81 −177 50 87 −9 5 9 95 4 210 80 0.12 8
    49 2024-01-24 4:38:11 78.70 41.08 7.0 5.4 82 37 91 261 53 89 351 8 167 82 261 1 0.07 57
    50 2024-01-24 3:38:45 78.57 41.14 7.0 3.8 140 90 0 50 90 180 95 0 185 0 0 90 0.00 8
    51 2024-01-24 3:20:17 78.77 41.30 20.0 3.9 280 80 90 100 10 90 10 35 190 55 280 0 0.09 11
    52 2024-01-24 3:11:40 78.69 41.30 16.0 4.1 280 40 90 100 50 90 190 5 10 85 280 0 0.22 9
    53 2024-01-24 1:48:48 78.14 40.85 16.0 3.9 80 90 90 170 0 0 170 45 350 45 80 0 0.27 15
    54 2024-01-23 21:47:17 78.62 41.14 3.0 4.1 268 51 103 68 41 75 349 5 233 79 80 10 0.25 12
    55 2024-01-23 20:09:29 78.88 41.33 10.0 4.7 152 61 152 257 66 33 24 3 117 40 290 50 0.26 19
    56 2024-01-23 19:07:06 78.83 41.33 10.0 4.2 288 75 167 22 77 16 155 2 245 20 60 70 0.10 10
    57 2024-01-23 17:23:20 78.57 41.16 5.0 4.4 90 90 90 180 0 0 180 45 0 45 90 0 0.09 11
    58 2024-01-23 17:07:09 78.56 41.18 6.0 4.7 300 88 −170 210 80 −2 165 8 75 6 310 80 0.00 8
    59 2024-01-23 11:52:20 78.74 41.33 18.0 4.4 170 0 0 80 90 90 170 45 350 45 260 0 0.17 12
    60 2024-01-23 9:18:41 78.81 41.20 7.0 5.3 80 45 83 270 45 97 355 0 262 85 85 5 0.00 20
    61 2024-01-23 8:12:39 78.56 41.15 7.0 4.6 241 55 72 90 39 113 344 8 103 73 252 14 0.12 16
    62 2024-01-23 7:55:34 78.56 41.09 10.0 4.6 220 0 0 130 90 90 220 45 40 45 310 0 0.07 14
    63 2024-01-23 7:19:27 78.80 41.15 10.0 5.4 134 61 114 271 37 53 207 13 87 65 302 21 0.12 26
    64 2024-01-23 5:16:43 78.61 41.07 16.0 4.6 70 90 90 160 0 0 160 45 340 45 70 0 0.29 28
    65 2024-01-23 4:57:12 78.78 41.25 6.0 4.8 97 72 98 253 20 67 181 27 19 62 275 8 0.00 9
    66 2024-01-23 4:29:30 78.71 41.11 18.0 5.0 348 80 −148 252 59 −12 215 29 117 14 4 57 0.18 11
    67 2024-01-23 3:36:47 78.64 41.11 7.0 5.5 236 49 71 83 44 110 339 2 79 76 249 14 0.05 43
    68 2024-01-23 2:09:05 78.72 41.20 18.0 7.1 237 41 57 97 56 115 170 8 60 67 263 21 0.01 68
    下载: 导出CSV

    表  3  乌什MS ≥ 5.0地震震源机制解的最小空间旋转角

    Table  3.   The minimum spatial rotation angles for focal mechanism solution of MS ≥ 5.0 earthquakes in Wushi

    序号 震源机制解 数据来源 本文最小空间旋转角/(°)
    走向/(°) 倾角/(°) 滑动角/(°)
    1 237 41 57 1 7
    2 236 49 71 123 25
    3 348 80 −148 12 38
    4 134 61 114 123 28
    5 80 45 83 12345 11
    6 82 37 91 1245 16
    7 51 66 100 12 14
    8 183 81 10 12 22
    9 303 52 107 12 21
    10 237 74 −103 12 28
    11 274 36 132 126789 33
    注:①关兆萱等(2024);②中国地震台网中心(https://data.earthquake.cn/);③郭祥云(私人通讯)提供的内部数据;④德国地球科学研究中心(GFZ)(https://geofon.gfz-potsdam.de/);⑤美国国家地震信息中心(NEIC)(https://www.usgs.gov/programs/earthquake-hazards/);⑥欧洲-地中海地震中心(SC4)(https://www.emsc-csem.org/Earthquake_information/);⑦法国波利尼亚海啸预警中心(CPPT)(https://www-dase.cea.fr/);⑧全球矩心矩张量(GCMT)(https://www.globalcmt.org/);⑨巴黎地球物理研究所(IPGP)(http://geoscope.ipgp.fr/)。
    下载: 导出CSV
  • 戴盈磊, 张欣然, 惠杨等, 2023. 2013年辽宁灯塔M5.1地震前小震序列震源机制一致性特征. 防灾减灾学报, 39(1): 6−11. doi: 10.13693/j.cnki.cn21-1573.2023.01.002

    Dai Y. L., Zhang X. R., Hui Y., et al., 2023. Focal mechanism consistency features of small earthquake sequence before Dengta M5.1 earthquake in Liaoning Province in 2013. Journal of Disaster Prevention and Reduction, 39(1): 6−11. (in Chinese) doi: 10.13693/j.cnki.cn21-1573.2023.01.002
    关兆萱, 万永革, 周明月等, 2024. 2024年新疆乌什MS7.1地震发震断层产状及其动力学探讨. 地震, 44(2): 1−11. doi: 10.12196/j.issn.1000-3274.2024.02.001

    Guan Z. X., Wan Y. G., Zhou M. Y., et al., 2024. Seismogenic fault plane and geodynamic discussion of the 2024 Wushi MS7.1 earthquake, Xinjiang, China. Earthquake, 44(2): 1−11. (in Chinese) doi: 10.12196/j.issn.1000-3274.2024.02.001
    李金, 周龙泉, 龙海英等, 2015. 天山地震带(中国境内)震源机制一致性参数的时空特征. 地震地质, 37(3): 792−803.

    Li J., Zhou L. Q., Long H. Y., et al., 2015. Spatial-temporal characteristics of the focal mechanism consistency parameter in Tianshan (within Chinese territory) seismic zone. Seismology and Geology, 37(3): 792−803. (in Chinese)
    李钦祖, 王泽皋, 贾云年等, 1973. 由单台小地震资料所得两个区域的应力场. 地球物理学报, 16(1): 49−61.

    Li C. T., Wang T. K., Chia Y. N., et al., 1973. Stress field obtained for two regions from weak earthquake data recorded at a single seismic station. Chinese Journal of Geophysics, 16(1): 49−61. (in Chinese)
    李振月, 万永革, 胡晓辉等, 2020. 应力张量反演的遗传算法及其在青藏高原东北缘的应用. 地球物理学报, 63(2): 562−572.

    Li Z. Y., Wan Y. G., Hu X. H., et al., 2020. A genetic algorithm for stress tensor inversion and its application to the northeast margin of the Tibetan Plateau. Chinese Journal of Geophysics, 63(2): 562−572. (in Chinese)
    梁尚鸿, 李幼铭, 束沛镒等, 1984. 利用区域地震台网 $ \bar{P} $ $ \bar{{S}} $ 振幅比资料测定小震震源参数. 地球物理学报, 27(3): 249−257.

    Liang S. H., Li Y. M., Shu P. Y., et al., 1984. On the determining of source parameters of small earthquakes by using amplitude ratios of $ \bar{P} $ and $ \bar{{S}} $ from regional network observations. Chinese Journal of Geophysics, 27(3): 249−257. (in Chinese)
    马倩雯, 宋春燕, 聂晓红等, 2024. 2024年1月23日乌什MS7.1地震序列类型判定. 内陆地震, 38(2): 121−127.

    Ma Q. W., Song C. Y., Nie X. H., et al., 2024. Wushi MS7.1 earthquake sequence type determination on January 23, 2024. Inland Earthquake, 38(2): 121−127. (in Chinese)
    田优平, 唐红亮, 康承旭等, 2020. 综合震源机制解法反演湖南地区构造应力场的初步结果. 地球物理学报, 63(11): 4080−4096.

    Tian Y. P., Tang H. L., Kang C. X., et al., 2020. Preliminary results of inversion of tectonic stress field in Hunan region by the composite focal mechanism method. Chinese Journal of Geophysics, 63(11): 4080−4096. (in Chinese)
    万永革, 吴逸民, 盛书中等, 2011. P波极性数据所揭示的台湾地区三维应力结构的初步结果. 地球物理学报, 54(11): 2809−2818. doi: 10.3969/j.issn.0001-5733.2011.11.011

    Wan Y. G., Wu Y. M., Sheng S. Z., et al., 2011. Preliminary result of Taiwan 3-D stress field from P wave polarity data. Chinese Journal of Geophysics, 54(11): 2809−2818. (in Chinese) doi: 10.3969/j.issn.0001-5733.2011.11.011
    万永革, 2020. 震源机制与应力体系关系模拟研究. 地球物理学报, 63(6): 2281−2296. doi: 10.6038/cjg2020M0472

    Wan Y. G., 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes. Chinese Journal of Geophysics, 63(6): 2281−2296. (in Chinese) doi: 10.6038/cjg2020M0472
    万永革, 许鑫, 黄少华等, 2022. P波极性资料确定的2022青海门源MS6.9地震序列震源机制及应力场. 地震工程学报, 44(3): 670−679, 690. doi: 10.20000/j.1000-0844.20220322001

    Wan Y. G., Xu X., Huang S. H., et al., 2022. Focal mechanisms and stress field of the 2022 Menyuan, Qinghai MS6.9 earthquake sequence determined by P-wave polarity data. China Earthquake Engineering Journal, 44(3): 670−679,690. (in Chinese) doi: 10.20000/j.1000-0844.20220322001
    万永革, 2024. 震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析. 地球科学, 49(7): 2675−2684. doi: 10.3799/dqkx.2022.245

    Wan Y. G., 2024. Focal mechanism classification based on areal strain of horizontal strain rosette of focal mechanism and characteristic analysis of overall focal mechanism of earthquake sequence. Earth Science, 49(7): 2675−2684. (in Chinese) doi: 10.3799/dqkx.2022.245
    王子韬, 程惠红, 董培育等, 2020. 天山造山带及邻区孕震应力场及断裂带活动性特征的数值实验分析. 地球物理学报, 63(11): 4037−4049. doi: 10.6038/cjg2020O0052

    Wang Z. T., Cheng H. H., Dong P. Y., et al., 2020. Numerical analysis of seismogenic stress field and fault activity characteristics of Tianshan Orogen and its adjacent areas. Chinese Journal of Geophysics, 63(11): 4037−4049. (in Chinese) doi: 10.6038/cjg2020O0052
    许忠淮, 1985. 用滑动方向拟合法反演唐山余震区的平均应力场. 地震学报, 7(4): 349−362.

    Xu Z. H., 1985. Mean stress field in Tangshan aftershock area obtained from focal mechanism data by fitting slip directions. Acta Seismologica Sinica, 7(4): 349−362. (in Chinese)
    许忠淮, 汪素云, 黄雨蕊等, 1987. 由多个小震推断的青甘和川滇地区地壳应力场的方向特征. 地球物理学报, 30(5): 476−486.

    Xu Z. H., Wang S. Y., Huang Y. R., et al., 1987. Directions of mean stress axes in Southwestern China deduced from microearthquake data. Chinese Journal of Geophysics, 30(5): 476−486. (in Chinese)
    易桂喜, 龙锋, Vallage A. 等, 2016. 2013年芦山地震序列震源机制与震源区构造变形特征分析. 地球物理学报, 59(10): 3711−3731. doi: 10.6038/cjg20161017

    Yi G. X., Long F., Vallage A., et al., 2016. Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan earthquake sequence, Southwestern China. Chinese Journal of Geophysics, 59(10): 3711−3731. (in Chinese) doi: 10.6038/cjg20161017
    尹欣欣, 王树旺, 梁潇南等, 2024. 断层复杂性对地震余震衰减的影响−−以2024年乌什MS7.1地震为例. 地震工程学报, 46(4): 965−972, 991.

    Yin X. X., Wang S. W., Liang X. N., et al., 2024. Impact of fault complexity on aftershock decay: a case study of the Wushi MS7.1 earthquake, 2024. China Earthquake Engineering Journal, 46(4): 965−972,991. (in Chinese)
    张博譞, 钱黎, 李涛等, 2024. 2024年1月23日新疆乌什MS7.1地震地质灾害和地表破裂. 地震地质, 46(1): 220−234.

    Zhang B. X., Qian L., Li T., et al., 2024. Geological disasters and surface ruptures of January 23, 2024 MS7.1 Wushi earthquake, Xinjiang, China. Seismology and Geology, 46(1): 220−234. (in Chinese)
    赵磊, 陈志丹, 谢磊等, 2024. 2024年1月23日MW7.0乌什地震InSAR同震形变场和断层滑动分布. 地球与行星物理论评(中英文), 55(4): 453−460. doi: 10.19975/j.dqyxx.2024-010

    Zhao L., Chen Z. D., Xie L., et al., 2024. Coseismic deformation and slip model of the 2024 MW7.0 Wushi earthquake obtained from InSAR observation. Reviews of Geophysics and Planetary Physics, 55(4): 453−460. (in Chinese) doi: 10.19975/j.dqyxx.2024-010
    朱爽, 梁洪宝, 魏文薪等, 2021. 天山地震带主要活动断层现今的滑动速率及其地震矩亏损. 地震地质, 43(1): 249−261.

    Zhu S., Liang H. B., Wei W. X., et al., 2021. Slip rates and seismic moment deficits on major faults in the Tianshan region. Seismology and Geology, 43(1): 249−261. (in Chinese)
    Aki K., 1966. Earthquake generating stress in Japan for the years 1961 to 1963 obtained by smoothing the first motion radiation patterns. Bulletin of the Earthquake Research Institute, 44(2): 447−471.
    Amelung F., King G., 1997. Large-scale tectonic deformation inferred from small earthquakes. Nature, 386(6626): 702−705. doi: 10.1038/386702a0
    Dziewonski A. M., Chou T. A., Woodhouse J. H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4): 2825−2852. doi: 10.1029/JB086iB04p02825
    Frohlich C., Apperson K. D., 1992. Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11(2): 279−296. doi: 10.1029/91TC02888
    Gephart J. W., Forsyth D. W., 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. Journal of Geophysical Research: Solid Earth, 89(B11): 9305−9320. doi: 10.1029/JB089iB11p09305
    Hardebeck J. L., Shearer P. M., 2002. A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6): 2264−2276. doi: 10.1785/0120010200
    Hardebeck J. L., 2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6): 2434−2444. doi: 10.1785/0120020236
    Kagan Y. Y., 1991. 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3): 709−716. doi: 10.1111/j.1365-246X.1991.tb06343.x
    Kisslinger C., 1980. Evaluation of S to P amplitude rations for determining focal mechanisms from regional network observations. Bulletin of the Seismological Society of America, 70(4): 999−1014. doi: 10.1785/BSSA0700040999
    Li J., Yao Y., Li R., et al., 2022. Present-day strike-slip faulting and thrusting of the Kepingtage fold-and-thrust belt in southern Tianshan: constraints from GPS observations. Geophysical Research Letters, 49(11): e2022GL099105. doi: 10.1029/2022GL099105
    Michael A. J., 1987. Use of focal mechanisms to determine stress: a control study. Journal of Geophysical Research: Solid Earth, 92(B1): 357−368. doi: 10.1029/JB092iB01p00357
    Song X. J., Helmberger D. V., 1996. Source estimation of finite faults from broadband regional networks. Bulletin of the Seismological Society of America, 86(3): 797−804. doi: 10.1785/BSSA0860030797
    Tan Y., Helmberger D., 2007. A new method for determining small earthquake source parameters using short-period P waves. Bulletin of the Seismological Society of America, 97(4): 1176−1195. doi: 10.1785/0120060251
    Vallage A., Devès M. H., Klinger Y., et al., 2014. Localized slip and distributed deformation in oblique settings: the example of the Denali fault system, Alaska. Geophysical Journal International, 197(3): 1284−1298. doi: 10.1093/gji/ggu100
    Wessel P. , Luis J. F. , Uieda L. , et al. , 2019. The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556−5564.
    Wu C. Y., Zheng W. J., Zhang P. Z., et al., 2019. Oblique thrust of the Maidan fault and Late Quaternary tectonic deformation in the southwestern Tian Shan, Northwestern China. Tectonics, 38(8): 2625−2645. doi: 10.1029/2018TC005248
    Yukutake Y., Iio Y., Katao H., et al., 2007. Estimation of the stress field in the region of the 2000 western Tottori earthquake: using numerous aftershock focal mechanisms. Journal of Geophysical Research: Solid Earth, 112(B9): B09306.
    Zhu L. P., Helmberger D. V., 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5): 1634−1641. doi: 10.1785/BSSA0860051634
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-28
  • 录用日期:  2025-03-24
  • 修回日期:  2025-03-14
  • 网络出版日期:  2026-01-13

目录

    /

    返回文章
    返回