• ISSN 1673-5722
  • CN 11-5429/P

中天山某隧址区实测地应力场特征及其区域地壳稳定性意义分析

景俊杰 罗永红 乔国文 李治财 周赞

景俊杰,罗永红,乔国文,李治财,周赞,2025. 中天山某隧址区实测地应力场特征及其区域地壳稳定性意义分析. 震灾防御技术,x(x):1−11. doi:10.11899/zzfy20240507. doi: 10.11899/zzfy20240507
引用本文: 景俊杰,罗永红,乔国文,李治财,周赞,2025. 中天山某隧址区实测地应力场特征及其区域地壳稳定性意义分析. 震灾防御技术,x(x):1−11. doi:10.11899/zzfy20240507. doi: 10.11899/zzfy20240507
Jing Junjie, Luo Yonghong, Qiao Guowen, Li Zhicai, Zhou Zan. The characteristics of measured in-situ stress field in a tunnel site in Central Tianshan Mountains and its significance to regional crustal stability[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240507
Citation: Jing Junjie, Luo Yonghong, Qiao Guowen, Li Zhicai, Zhou Zan. The characteristics of measured in-situ stress field in a tunnel site in Central Tianshan Mountains and its significance to regional crustal stability[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240507

中天山某隧址区实测地应力场特征及其区域地壳稳定性意义分析

doi: 10.11899/zzfy20240507
基金项目: 国家自然科学基金面上项目(42077257);地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2019 K024)
详细信息
    作者简介:

    景俊杰,男,生于1997年。硕士研究生。主要从事地应力及地质灾害防治研究。E-mail:280817839@qq.com

The characteristics of measured in-situ stress field in a tunnel site in Central Tianshan Mountains and its significance to regional crustal stability

  • 摘要: 新疆中天山地质及构造条件复杂,某隧址埋深最大接近1336 m,探明隧址区地应力场特征和断层摩擦系数对隧址区稳定性评价具有重要工程及理论价值。本文基于隧址区内9个钻孔获得的37条实测地应力数据,通过统计及拟合数据,引入断层摩擦系数μ、地壳应力积累指标μm,并结合区域地震分布和震源机制等分析。研究表明,中天山隧址区最大水平主应力优势方向为N37°E,与区域构造应力场NNE方向相符;浅部地壳以水平构造应力为主,最大、最小水平主应力随深度线性增长梯度分别为0.024和0.017,应力状态以逆冲型为主,局部兼有走滑型。隧址区内断层摩擦系数μ分析揭示,其主要分布范围为0.15~0.3,表明大部分断层处于低强度状态,而F6断裂μ值达到0.39明显高于其他断层,同时区内地壳应力积累指标μm近80%应力积累不高,未达到临界滑动值0.5,但F6断裂处应力积累程度均高于0.5,说明F6断裂相较其它断层的应力积累更大,更具有活动性。结合NWW向断层附近地震频发及近年小震震源机制解特征,表明隧址区断层更易沿北西西向形成滑动。
  • 图  1  区域M≥2.0地震震中分布及区域构造图

    Figure  1.  The epicenter distribution and regional tectonic map of M≥2.0 earthquakes in the region

    图  2  最大、最小水平主应力随深度变化

    Figure  2.  The maximum and minimum horizontal principal stresses vary with depth.

    图  3  最大水平主应力方向及断裂走向

    Figure  3.  Direction of maximum horizontal principal stress and fracture trend

    图  4  侧压力系数k随深度变化拟合曲线

    Figure  4.  Fitting curve of the lateral pressure coefficient k versus depth

    图  5  有效应力莫尔圆与断层摩擦系数分析

    Figure  5.  Analysis of the effective stress Mohr circle and fault friction coefficient

    图  6  μm随深度变化及主应力间的关系

    Figure  6.  μm with depth and the relationship between principal stresses

    图  7  隧址区附近历史地震震源机制解分布

    Figure  7.  Distribution of focal mechanism solutions of historical earthquakes near the tunnel site

    表  1  隧址区内其余断层性质

    Table  1.   Properties of other faults in tunnel site area

    断裂编号 产状 断裂性质
    走向/(°) 倾向/(°) 倾角/(°)
    Fw-1 117 207 76 逆断层
    Fw-2 108 18 40~80 右行平移断层
    Fw-3 128 38 73 -
    Fw-4 81 351 60~80 -
    Fw-5 94 4 61 逆断层
    Fw-6 114 204 86 逆断层
    Fw-7 121 211 68 逆断层
    Fw-8 42 312 86 正断层
    Fw-9 105 - - -
    Fw-10 113 23 78 正断层
    Fw-11 113 205 80 -
    Fw-12 115 203 80 -
    Fw-13 90 190 81 逆断层
    Fw-14 100 190 83 逆断层
    下载: 导出CSV

    表  2  隧址区实测地应力数据

    Table  2.   In-situ stress data measured in tunnel site area

    编号测号段深度/m钻孔岩性应力值/MPa地应力累计指数μm线性相关系数R
    σHσhσv
    ZK11195.1花岗闪长岩16.89.34.90.630.63
    2278.3花岗闪长岩22.613.27.00.620.60
    3306.1炭质板岩23.314.77.70.600.55
    4333.7炭质板岩22.213.58.30.560.63
    5361.5炭质板岩25.715.49.00.580.62
    6383.1炭质板岩25.016.89.60.550.53
    ZK21119.8片麻状花岗闪长岩12.17.43.20.650.53
    2210.8片麻状花岗闪长岩15.19.85.70.540.56
    3301.8片麻状花岗闪长岩18.211.28.10.480.69
    4365.5片麻状花岗闪长岩20.312.59.90.440.75
    5447.4片麻状花岗闪长岩22.214.412.10.390.77
    6492.9片麻状花岗闪长岩21.815.513.30.330.74
    7547.5片麻状花岗闪长岩26.317.214.80.370.79
    8583.9片麻状花岗闪长岩28.118.515.80.370.78

    ZK3
    1111.0大理岩7.15.23.00.460.46
    2156.5大理岩8.05.34.20.380.71
    3192.9大理岩9.56.55.20.360.70
    4220.2大理岩11.88.35.90.410.59
    5256.6大理岩14.59.96.90.440.61
    6302.1大理岩17.311.28.20.440.67
    7347.6大理岩18.511.19.40.420.81
    8429.5大理岩20.712.811.60.370.87
    9456.8大理岩21.414.312.30.360.78
    10484.1大理岩22.114.813.10.340.81
    11511.4大理岩23.014.313.80.330.95
    ZK41243.5花岗闪长岩9.96.85.90.350.77
    2511.2石英片岩16.311.412.30.260.83
    ZK51229.5石英片岩9.86.25.50.370.84
    2585.8片麻岩16.912.914.10.210.72
    ZK61350.0花岗岩11.58.78.60.210.98
    2776.0花岗闪长岩21.815.719.00.270.46
    ZK71231.8片麻状闪长岩8.45.75.60.270.94
    2761.8片麻状闪长岩20.212.718.30.410.26
    ZK81208.5砂质板岩9.56.15.00.410.75
    2352.8大理岩12.38.58.50.260.98
    ZK91235.4砂质板岩10.87.55.70.410.65
    2371.9大理岩13.69.68.90.280.87
    下载: 导出CSV

    表  3  ZK9钻孔k值的拟合值与实测值误差分析

    Table  3.   ZK9 borehole k value fitting value and the measured value error analysis

    深度/m拟合kH maxkh min实测kH maxkh min误差/%
    235.41.941.911
    1.291.322
    371.91.831.5418
    1.181.0710
    下载: 导出CSV

    表  4  400 m深度处钻孔的kμ

    Table  4.   k and μ values of boreholes at the depth of 400 m

    钻孔 kH max kh min σ'/MPa τ μ
    ZK1 2.69 1.72 18.34 7.11 0.39
    ZK2 1.95 1.26 14.65 4.50 0.31
    ZK3 1.82 1.17 13.50 3.87 0.29
    ZK4 1.75 0.95 9.05 1.82 0.20
    ZK5 1.83 1.19 8.70 1.59 0.18
    ZK6 1.84 1.20 8.28 1.34 0.16
    ZK7 1.79 1.18 7.74 1.18 0.15
    ZK8 1.76 1.22 8.64 1.55 0.18
    ZK9 1.78 1.16 9.23 1.89 0.21
    下载: 导出CSV
  • 崔光耀, 王明年, 于丽等, 2013. 汶川地震断层破碎带段隧道结构震害分析及震害机理研究. 土木工程学报, 46(11): 122−127.

    Cui G. Y., Wang M. N., Yu L., et al., 2013. Study on the characteristics and mechanism of seismic damage for tunnel structures on fault rupture zone in Wenchuan seismic disastrous area. China Civil Engineering Journal, 46(11): 122−127. (in Chinese)
    黄禄渊, 杨树新, 崔效锋等, 2013. 华北地区实测应力特征与断层稳定性分析. 岩土力学, 34(S1): 204−213.

    Huang L. Y., Yang S. X., Cui X. F., et al., 2013. Analysis of characteristics of measured stress and stability of faults in North China. Rock and Soil Mechanics, 34(S1): 204−213. (in Chinese)
    李艳永, 王成虎, 朱皓清等, 2020. 北天山地区震源机制与构造应力场特征. 地震, 40(2): 117−129. doi: 10.12196/j.issn.1000-3274.2020.02.009

    Li Y. Y., Wang C. H., Zhu H. Q., et al., 2020. The focal mechanism and stress field inversion in northern Tianshan mountain. Earthquake, 40(2): 117−129. (in Chinese) doi: 10.12196/j.issn.1000-3274.2020.02.009
    刘卓岩, 王成虎, 徐鑫等, 2017. 基于地应力实测数据分析郯庐断裂带中段滑动趋势. 现代地质, 31(4): 869−876. doi: 10.3969/j.issn.1000-8527.2017.04.021

    Liu Z. Y., Wang C. H., Xu X., et al., 2017. Slip tendency analysis of the Mid-segment of Tan-Lu fault belt based on stress measurements. Geoscience, 31(4): 869−876. (in Chinese) doi: 10.3969/j.issn.1000-8527.2017.04.021
    牛安福, 张凌空, 闫伟等, 2011. 中国钻孔应变观测能力及在地震预报中的应用. 大地测量与地球动力学, 31(2): 48−52. doi: 10.3969/j.issn.1671-5942.2011.02.011

    Niu A. F., Zhang L. K., Yan W., et al., 2011. Borehole strain measurement and application to earthquake prediction in China. Journal of Geodesy and Geodynamics, 31(2): 48−52. (in Chinese) doi: 10.3969/j.issn.1671-5942.2011.02.011
    王成虎, 丁立丰, 李方全等, 2012. 川西北跨度23a的原地应力实测数据特征及其地壳动力学意义分析. 岩石力学与工程学报, 31(11): 2171−2181. doi: 10.3969/j.issn.1000-6915.2012.11.004

    Wang C. H., Ding L. F., Li F. Q., et al., 2012. Characteristics of in-situ stress measurement in northwest Sichuan basin with timespan of 23 years and its crustal dynamics significance. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2171−2181. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.004
    王成虎, 宋成科, 郭启良等, 2014. 利用原地应力实测资料分析芦山地震震前浅部地壳应力积累. 地球物理学报, 57(1): 102−114. doi: 10.6038/cjg20140110

    Wang C. H., Song C. K., Guo Q. L., et al., 2014. Stress build-up in the shallow crust before the Lushan earthquake based on the in-situ stress measurements. Chinese Journal of Geophysics, 57(1): 102−114. (in Chinese) doi: 10.6038/cjg20140110
    王洪, 王成虎, 高桂云等, 2021. 青海共和盆地地应力状态与断层稳定性分析. 震灾防御技术, 16(1): 123−133. doi: 10.11899/zzfy20210113

    Wang H., Wang C. H., Gao G. Y., et al., 2021. The state of the in-situ stress and fault slide evaluation of Gonghe Basin, Qinghai Province. Technology for Earthquake Disaster Prevention, 16(1): 123−133. (in Chinese) doi: 10.11899/zzfy20210113
    王渝生, 2008. 李四光的地质力学与地震成因理论. 科技导报, 26(11): 98.
    谢富仁, 崔效锋, 赵建涛等, 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47(4): 654−662. doi: 10.3321/j.issn:0001-5733.2004.04.016

    Xie F. R., Cui X. F., Zhao J. T., et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese Journal of Geophysics, 47(4): 654−662. (in Chinese) doi: 10.3321/j.issn:0001-5733.2004.04.016
    阎渊, 2023. 青海门源MS6.9地震同震破裂的隧道破坏效应与启示. 地质力学学报, 29(6): 869−878. doi: 10.12090/j.issn.1006-6616.2023027

    Yan Y., 2023. The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS6.9 earthquake in Qinghai, China. Journal of Geomechanics, 29(6): 869−878. (in Chinese) doi: 10.12090/j.issn.1006-6616.2023027
    张杰, 王成虎, 贾晋等, 2018. 基于实测应力数据的北天山西部区域断层滑动趋势分析. 地震工程学报, 40(1): 73−78, 91. doi: 10.3969/j.issn.1000-0844.2018.01.073

    Zhang J., Wang C. H., Jia J., et al., 2018. Fault slip tendency in the western area of North Tianshan based on measured in-situ stress data. China Earthquake Engineering Journal, 40(1): 73−78,91. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.01.073
    张志斌, 赵晓成, 任林, 2020. 新疆天山中段的震源机制解与构造应力场特征分析. 地震地质, 42(3): 595−611. doi: 10.3969/j.issn.0253-4967.2020.03.004

    Zhang Z. B., Zhao X. C., Ren L., 2020. Focal mechanism solution and tectonic stress field characteristics of the middle Tianshan Mountains, Xinjiang. Seismology and Geology, 42(3): 595−611. (in Chinese) doi: 10.3969/j.issn.0253-4967.2020.03.004
    Anderson E. M., 1905. The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3): 387−402. doi: 10.1144/transed.8.3.387
    Brodsky E. E., Mori J. J., Anderson L., et al., 2020. The state of stress on the fault before, during, and after a major earthquake. Annual Review of Earth and Planetary Sciences, 48: 49−74. doi: 10.1146/annurev-earth-053018-060507
    Byerlee J., 1978. Friction of rocks. Pure and Applied Geophysics, 116(4-5): 615−626. doi: 10.1007/BF00876528
    Haimson B. C., Cornet F. H., 2003. ISRM Suggested Methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011−1020. doi: 10.1016/j.ijrmms.2003.08.002
    Raleigh C. B., Healy J. H., Bredehoeft J. D., 1976. An experiment in earthquake control at Rangely, colorado. Science, 191(4233): 1230−1237. doi: 10.1126/science.191.4233.1230
    Sheorey P. R., 1994. A theory for in situ stresses in isotropic and transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1): 23−34.
    Wang W. L., Wang T. T., Su J. J., et al., 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunnelling and Underground Space Technology, 16(3): 133−150. doi: 10.1016/S0886-7798(01)00047-5
    Zoback M. D., Healy J. H., Roller J. C., et al., 1978. Normal faulting and in situ stress in the South Carolina coastal plain near Charleston. Geology, 6(3): 147−152. doi: 10.1130/0091-7613(1978)6<147:NFAISS>2.0.CO;2
    Zoback M. D. , 2007. Reservoir geomechanics. Cambridge: Cambridge University Press.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 录用日期:  2024-08-15
  • 修回日期:  2024-08-05
  • 网络出版日期:  2025-09-04

目录

    /

    返回文章
    返回