• ISSN 1673-5722
  • CN 11-5429/P

循环加载频率对砂土抗剪能力的影响试验研究

王瑞琦 许成顺 徐佳琳

王瑞琦,许成顺,徐佳琳,2025. 循环加载频率对砂土抗剪能力的影响试验研究. 震灾防御技术,20(2):327−336. doi:10.11899/zzfy20240503. doi: 10.11899/zzfy20240503
引用本文: 王瑞琦,许成顺,徐佳琳,2025. 循环加载频率对砂土抗剪能力的影响试验研究. 震灾防御技术,20(2):327−336. doi:10.11899/zzfy20240503. doi: 10.11899/zzfy20240503
Wang Ruiqi, Xu Chengshun, Xu Jialin. Experimental Study on the Effect of Cyclic Loading Frequency on the Bearing Capacity of Sand[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 327-336. doi: 10.11899/zzfy20240503
Citation: Wang Ruiqi, Xu Chengshun, Xu Jialin. Experimental Study on the Effect of Cyclic Loading Frequency on the Bearing Capacity of Sand[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 327-336. doi: 10.11899/zzfy20240503

循环加载频率对砂土抗剪能力的影响试验研究

doi: 10.11899/zzfy20240503
基金项目: 国家自然科学基金委员会国家杰出青年科学基金项目(52225807)
详细信息
    作者简介:

    王瑞琦,女,生于1998年。硕士研究生。主要从事土动力学方面的工作。E-mail:wrq199801@163.com

    通讯作者:

    许成顺,女,生于1977年。教授。主要从事土动力学方面的工作。E-mail:xcs_2017@163.com

Experimental Study on the Effect of Cyclic Loading Frequency on the Bearing Capacity of Sand

  • 摘要: 本文针对相对密实度为35%、55%、75%的钙质砂和石英砂,开展了系列不排水单调和循环扭剪试验,重点探讨了循环加载频率为0.1、0.5、1、2 Hz作用下的砂土抗剪能力差异和静动力剪切特性的相关性。试验表明,无论是石英砂还是钙质砂,循环加载频率对其动应力-应变的影响十分显著,高频作用下,砂土液化后呈现抗剪能力衰减特性。低频荷载作用下,应重点关注砂土变形失稳问题,高频荷载作用下,则应重点考虑砂土抗剪能力失稳问题;循环荷载和单调加载下的相变应力比不同,当有效剪应力比(q/p')超过单调加载下的相变应力比时,砂土呈现变形快速发展特征;不同循环加载频率下,砂土的循环加载破坏线和单调加载破坏线基本相近。
  • 图  1  竖向-扭转双向耦合剪切仪

    Figure  1.  Vertical-torsional coupling shear apparatus

    图  2  试验用砂颗粒级配曲线

    Figure  2.  Particle size distribution curve of test sand

    图  3  循环加载频率对石英砂液化特征的影响

    Figure  3.  Cyclic loading frequency effects on liquefaction characteristics of quartz sand

    图  4  循环加载频率对钙质砂液化特征的影响

    Figure  4.  Cyclic loading frequency effects on liquefaction characteristics of calcareous sand

    图  5  循环加载频率对石英砂抗剪能力的影响

    Figure  5.  Cyclic loading frequency effects on bearing capacity of quartz sand

    图  6  循环加载频率对钙质砂抗剪能力的影响

    Figure  6.  Cyclic loading frequency effects on bearing capacity of calcareous sand

    图  7  石英砂静动扭剪试验结果(Dr=55%)

    Figure  7.  Static and dynamic torsional shear test results for quartz sand(Dr=55%)

    图  8  钙质砂静动扭剪试验结果(Dr=55%)

    Figure  8.  Static and dynamic torsional shear test results for calcareous sand(Dr=55%)

    图  9  钙质砂静动扭剪试验结果(Dr=75%、f=1 Hz)

    Figure  9.  Static and dynamic torsional shear test results for calcareous sand(Dr=75%、f=1 Hz)

    图  10  加载频率对相变内摩擦角、峰值内摩擦角的影响(Dr=55%)

    Figure  10.  Effect of loading frequency on phase transformation friction angle and peak internal friction angle(Dr=55%)

    表  1  试验方案

    Table  1.   Test condition

    试验类型 试验材料 相对密实度Dr 加载速率s或频率f 循环应力比CSR
    单调扭剪 石英砂 35%、55%、75% 5 kPa/min
    钙质砂
    循环扭剪 石英砂 35% 0.5、2 Hz 0.15
    55% 0.1、0.5、1、2 Hz 0.20
    75% 0.35
    钙质砂 35% 0.1、0.5、1、2 Hz 0.25
    55% 0.20
    75% 0.35
    下载: 导出CSV
  • 陈龙伟,刘昊儒,任叶飞等,2024. 2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析. 岩土工程学报,46(7):1541−1548. doi: 10.11779/CJGE20230333

    Chen L. W., Liu H. R., Ren Y. F., et al., 2024. In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th, 2023. Chinese Journal of Geotechnical Engineering, 46(7): 1541−1548. (in Chinese) doi: 10.11779/CJGE20230333
    董林,王兰民,夏坤等,2017. 基于台湾集集地震数据的CPT与SPT液化判别方法比较. 岩土力学,38(12):3643−3648.

    Dong L., Wang L. M., Xia K., et al., 2017. Comparison of CPT-based and SPT-based liquefaction discrimination methods by Taiwan Chi-Chi earthquake data. Rock and Soil Mechanics, 38(12): 3643−3648. (in Chinese)
    丰土根,张礼明,2013. 振动频率对饱和松砂动力特性影响试验研究. 水利与建筑工程学报,11(3):11−14,76. doi: 10.3969/j.issn.1672-1144.2013.03.005

    Feng T. G., Zhang L. M., 2013. Experimental study on effect of vibration frequency on dynamic behaviors of saturated loose sands. Journal of Water Resources and Architectural Engineering, 11(3): 11−14,76. (in Chinese) doi: 10.3969/j.issn.1672-1144.2013.03.005
    郭莹,2003. 复杂应力条件下饱和松砂的不排水动力特性试验研究. 大连:大连理工大学.

    Guo Y., 2003. Experimental studies on undrained cyclic behavior of loose sands under complex stress conditions considering static and cyclic coupling effect. Dalian:Dalian University of Technology. (in Chinese)
    郭莹,贺林,2009. 振动频率对饱和砂土液化强度的影响. 防灾减灾工程学报,29(6):618−623. doi: 10.3969/j.issn.1672-2132.2009.06.004

    Guo Y., He L., 2009. The influences of the vibration frequencies on liquefaction strength of saturated sands. Journal of Disaster Prevention and Mitigation Engineering, 29(6): 618−623. (in Chinese) doi: 10.3969/j.issn.1672-2132.2009.06.004
    李建国,2005. 波浪荷载作用下饱和钙质砂动力特性的试验研究. 武汉:中国科学院研究生院(武汉岩土力学研究所).

    Li J. G., 2005. Experimental research on dynamic behavior of saturated calcareous sand under wave loading. Wuhan: Chinese Academy of Sciences, P.R. China (Institute of Rock & Soil Mechanics). (in Chinese)
    刘鑫,李飒,刘小龙等,2019. 南海钙质砂的动剪切模量与阻尼比试验研究. 岩土工程学报,41(9):1773−1780. doi: 10.11779/CJGE201909024

    Liu X., Li S., Liu X. L., et al., 2019. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea. Chinese Journal of Geotechnical Engineering, 41(9): 1773−1780. (in Chinese) doi: 10.11779/CJGE201909024
    栾茂田,许成顺,何杨等,2006. 复杂应力条件下饱和松砂单调与循环剪切特性的比较研究. 地震工程与工程振动,26(1):181−187. doi: 10.3969/j.issn.1000-1301.2006.01.030

    Luan M. T., Xu C. S., He Y., et al., 2006. A comparative study on monotonic and cyclic shear behavior of saturated loose sand under complex stress condition. Earthquake Engineering and Engineering Vibration, 26(1): 181−187. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.01.030
    栾茂田,张振东,许成顺等,2008. 许成顺等. K0固结条件下砂土的循环剪切特性试验研究. 岩土力学,29(9):2323−2328.

    Luan M. T., Zhang Z. D., Xu C. S., et al., 2008. Experimental studies of cyclic shear characteristic of sand under K0 consolidation condition. Rock and Soil Mechanics, 29(9): 2323−2328. (in Chinese)
    王立朝,侯圣山,董英等,2024. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议. 中国地质灾害与防治学报,35(3):108−118.

    Wang L. C., Hou S. S., Dong Y., et al., 2024. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control. The Chinese Journal of Geological Hazard and Control, 35(3): 108−118. (in Chinese)
    吴世明,徐攸在,1998. 土动力学现状与发展. 岩土工程学报,20(3):125−131. doi: 10.3321/j.issn:1000-4548.1998.03.030

    Wu S. M., Xu Y. Z., 1998. State-of-art and development of soil dynamics. Chinese Journal of Geotechnical Engineering, 20(3): 125−131. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.03.030
    谢定义,1992. 饱和砂土体液化的若干问题. 岩土工程学报,14(3):90−98. doi: 10.3321/j.issn:1000-4548.1992.03.014
    许成顺,刘晨,刘海强等,2013. 竖向-扭转双向耦合剪切仪功能分析及应用. 北京工业大学学报,39(2):233−238. doi: 10.11936/bjutxb2013020233

    Xu C. S., Liu C., Liu H. Q., et al., 2013. Function analysis and application of vertical-torsional coupling shear apparatus. Journal of Beijing University of Technology, 39(2): 233−238. (in Chinese) doi: 10.11936/bjutxb2013020233
    许成顺,王冰,杜修力等,2021. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报,54(11):109−118.

    Xu C. S., Wang B., Du X. L., et al., 2021. Experimental study on effect of cyclic loading frequency on liquefaction mode of sand. China Civil Engineering Journal, 54(11): 109−118. (in Chinese)
    虞海珍,2006. 复杂应力条件下饱和钙质砂动力特性的试验研究. 武汉:华中科技大学.

    Yu H. Z., 2006. Experimental research on dynamic behavior of saturated calcareous sand under complex stress conditions. Wuhan:Huazhong University of Science and Technology. (in Chinese)
    袁晓铭,曹振中,孙锐等,2009. 汶川8.0级地震液化特征初步研究. 岩石力学与工程学报,28(6):1288−1296. doi: 10.3321/j.issn:1000-6915.2009.06.026

    Yuan X. M., Cao Z. Z., Sun Y., et al., 2009. Preliminary research on liquefaction characteristics of Wenchuan 8.0 earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1288−1296. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.026
    Airey D. W., Fahey M., 1991. Cyclic response of calcareous soil from the North-West Shelf of Australia. Géotechnique, 41(1): 101−121.
    Green R. A. , Olson S. M. , Cox B. R. , et al. , 2011. Geotechnical aspects of failures at Port-au-Prince Seaport during the 12 January 2010 Haiti Earthquake. Earthquake Spectra, 27(1 Suppl1): 43−65.
    Hyodd M., Hyde A. F. L., Aramaki N., 1998. Liquefaction of crushable soils. Géotechnique, 48(4): 527−543.
    Hyodo M., Aramaki N., Itoh M., et al., 1996. Cyclic strength and deformation of crushable carbonate sand. Soil Dynamics and Earthquake Engineering, 15(5): 331−336. doi: 10.1016/0267-7261(96)00003-6
    Ishihara K., Koga Y., 1981. Case studies of liquefaction in the 1964 Niigata earthquake. Soils and Foundations, 21(3): 35−52. doi: 10.3208/sandf1972.21.3_35
    Lee K. L., Focht J. A., 1976. Cyclic testing of soil for ocean wave loading problems. Marine Geotechnology, 1(4): 305−325. doi: 10.1080/10641197609388171
    Mejia L. H. , Yeung M. R. , 1995. Liquefaction of coralline soils during the 1993 Guam earthquake. In: Kramer S. , Siddharthan R. , eds. , Earthquake-Induced Movements and Seismic Remediation of Existing Foundations and Abutments. San Diego: ASCE, 33−48.
    Mulilis J. P. , Chan C. K. , Seed H. B. , 1975. The effects of method of sample preparation on the cyclic stress-strain behavior of sands. Berkeley: Earthquake Engineering Research Center, University of California, 75.
    Salem M., Elmamlouk H., Agaiby S., 2013. Static and cyclic behavior of North Coast calcareous sand in Egypt. Soil Dynamics and Earthquake Engineering, 55: 83−91. doi: 10.1016/j.soildyn.2013.09.001
    Shahnazari H., Jafarian Y., Tutunchian M. A., et al., 2016. Undrained cyclic and monotonic behavior of Hormuz calcareous sand using hollow cylinder simple shear tests. International Journal of Civil Engineering, 14(4): 209−219. doi: 10.1007/s40999-016-0021-6
    Silva W. , 1988. Soil response to earthquake ground motion: final report. Walnut Creek: Woodward-Clyde Consultants.
    Yoshimi Y., Oh-Oka H., 1975. Influence of degree of shear stress reversal on the liquefaction potential of saturated sand. Soils and Foundations, 15(3): 27−40. doi: 10.3208/sandf1972.15.3_27
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 录用日期:  2024-07-22
  • 修回日期:  2024-06-21
  • 网络出版日期:  2025-07-17
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回