• ISSN 1673-5722
  • CN 11-5429/P

基于复杂网络理论的浙江地震信息网络关键节点识别与鲁棒性分析

吴凌杰 陈吉锋 蓝蕾 严峻峰 徐晓桐 李阳

吴凌杰,陈吉锋,蓝蕾,严峻峰,徐晓桐,李阳,2024. 基于复杂网络理论的浙江地震信息网络关键节点识别与鲁棒性分析. 震灾防御技术,19(4):837−849. doi:10.11899/zzfy20240420. doi: 10.11899/zzfy20240420
引用本文: 吴凌杰,陈吉锋,蓝蕾,严峻峰,徐晓桐,李阳,2024. 基于复杂网络理论的浙江地震信息网络关键节点识别与鲁棒性分析. 震灾防御技术,19(4):837−849. doi:10.11899/zzfy20240420. doi: 10.11899/zzfy20240420
Wu Lingjie, Chen Jifeng, Lan Lei, Yan Junfeng, Xu Xiaotong, Li Yang. The Key Nodes Identification and Robustness Analysis of Zhejiang Seismic Network Based on Complex Network Theory[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 837-849. doi: 10.11899/zzfy20240420
Citation: Wu Lingjie, Chen Jifeng, Lan Lei, Yan Junfeng, Xu Xiaotong, Li Yang. The Key Nodes Identification and Robustness Analysis of Zhejiang Seismic Network Based on Complex Network Theory[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 837-849. doi: 10.11899/zzfy20240420

基于复杂网络理论的浙江地震信息网络关键节点识别与鲁棒性分析

doi: 10.11899/zzfy20240420
基金项目: 中国地震局地震应急与信息青年重点任务(CEAITNS202322);浙江省地震局智慧地震信息服务研究创新团队
详细信息
    作者简介:

    吴凌杰,男,生于1994年。硕士,工程师。主要从事地震信息化研究工作。E-mail:401018856@qq.com

    通讯作者:

    陈吉锋,男,生于1980年。硕士,高级工程师。主要从事地震信息化研究工作。E-mail:2529431386@qq.com

The Key Nodes Identification and Robustness Analysis of Zhejiang Seismic Network Based on Complex Network Theory

  • 摘要: 信息化是推进地震现代化建设的强力引擎。当前,面对日益复杂的信息网络系统,有效识别网络关键节点和评估网络鲁棒性,对于提高站网运行能力和规划网络建设具有重要现实意义。首先,基于浙江地震信息网络实际运行数据,对网络进行路由器级建模;然后,与小世界网络和无标度网络进行对比,分析其表现的拓扑结构特征;其次,结合复杂网络统计特性和地震业务特性,构建关键节点评价指标体系,并基于主观和客观维度设置指标权重,采用理想逼近排序法,综合评价各节点重要程度;最后,模拟不同攻击方式评估网络的鲁棒性。研究结果表明,相较于传统方法,本研究建立的关键节点评价指标体系和权重计算方法更合理,评价结果更准确;浙江地震信息网络为无标度网络,对蓄意攻击具有脆弱性,但对随机攻击具有较强的鲁棒性。
  • 图  1  网络架构

    Figure  1.  Diagram of network architecture

    图  2  浙江地震信息网络拓扑

    Figure  2.  The topology of Zhejiang seismic network

    图  3  无标度网络拓扑

    Figure  3.  The topology of scale-free network

    图  4  小世界网络拓扑

    Figure  4.  The topology of small-world network

    图  5  3种网络度分布直方图

    Figure  5.  Histogram of degree distribution for 3 types of networks

    图  6  3种网络介数中心性分布直方图

    Figure  6.  Histogram of centrality distribution for 3 types of networks

    图  7  3种网络最短路径分布

    Figure  7.  Plot of shortest paths for 3 types of networks

    图  8  浙江地震信息网络幂函数拟合

    Figure  8.  Power function fitting graph of Zhejiang seismic network

    图  9  评价指标体系

    Figure  9.  Seismic network node evaluation system

    图  10  节点重要性评价流程

    Figure  10.  The flowchart of node evaluation

    图  11  评价指标权重

    Figure  11.  The weights of different indicators

    图  12  蓄意和随机攻击下地震信息网络鲁棒性

    Figure  12.  Robustness of seismic network under intentional and random attacks

    表  1  各网络拓扑特征值

    Table  1.   The Characteristic topology of each network

    网络类型边数平均度最大度特征路径网络直径聚合系数
    地震信息网络1431.99244.7280
    无标度网络1443.94283.2160.07
    小世界网络144020291.9230.19
    下载: 导出CSV

    表  2  比例标度规则

    Table  2.   The Proportional scaling rules

    尺度aij 含义
    1 表示2个指标同等重要
    2~3 表示指标$ i $较$ j $稍微重要
    4~5 表示指标$ i $较$ j $明显重要
    6~7 表示指标$ i $较$ j $强烈重要
    8~9 表示指标$ i $较$ j $极端重要
    下载: 导出CSV

    表  3  RI指标

    Table  3.   The RI indicator

    m 1 2 3 4 5 6 7 8 9
    RI 0 0 0.59 0.9 1.12 1.24 1.32 1.41 1.45
    下载: 导出CSV

    表  4  地震信息网络部分节点标准化后的评价指标分数

    Table  4.   Evaluation index scores of some nodes in the seismic network

    序号NTNLNCDCBCCCEC
    A10.7500.69610.435110.107
    A01110.1300.5130.7410.258
    A20.7500.210110.3490.4691
    C10.6250.12910.9130.3350.3950.048
    I10.6250.11210.8260.3070.3780.024 5
    A30.750.07110.5650.2050.4240.002
    H00.6250.06310.4350.1590.5640.036
    C00.6250.13410.0430.3200.6380.031
    I00.6250.12010.0430.2970.6260.026
    B10.6250.10310.4780.1750.3110.008
    下载: 导出CSV

    表  5  地震信息网络节点重要性排序结果

    Table  5.   The top 10 nodes of seismic network

    排序本文方案TOPSIS-灰色关联分析法综合中心度法
    1A1A2A2
    2A0A1A1
    3A2A0C1
    4C1C1I1
    5I1I1A3
    6A3A3A0
    7H0B1B1
    8C0H0H0
    9I0E1E1
    10B1C0C0
    下载: 导出CSV
  • 丁琳,刘莹慧,2016. 拓扑对复杂通信网络级联故障传播的影响. 南华大学学报(自然科学版),30(4):82−87. doi: 10.3969/j.issn.1673-0062.2016.04.016

    Ding L., Liu Y. H., 2016. Impact of topology on the propagation of cascading failure in complex communication networks. Journal of University of South China (Science and Technology), 30(4): 82−87. (in Chinese) doi: 10.3969/j.issn.1673-0062.2016.04.016
    段东立,2015. 基于负载最近邻偏好分配的复杂网络连锁效应. 复杂系统与复杂性科学,12(1):33−39.

    Duan D. L., 2015. Cascading failure of complex networks based on load local preferential redistribution rule. Complex Systems and Complexity Science, 12(1): 33−39. (in Chinese)
    贾开华,于云霞,范秀波等,2023. 基于AHP-EWM综合赋权和TOPSIS法的多能互补系统综合评价. 中国电力,56(7):228−238.

    Jia K. H., Yu Y. X., Fan X. B., et al., 2023. Multi-criteria comprehensive evaluation of multi-energy complementary system based on AHP-EWM and TOPSIS method. Electric Power, 56(7): 228−238. (in Chinese)
    李刚,陈述新,赵洪壮等,2018. 地震行业网络安全全流量监控系统建设与应用. 地震工程学报,40(S1):205−213.

    Li G., Chen S. X., Zhao H. Z., et al., 2018. Construction and application of a full-flow monitoring system for seismic network safety. China Earthquake Engineering Journal, 40(S1): 205−213. (in Chinese)
    李莉,2019. 统计学原理与应用. 南京:南京大学出版社.
    刘同林,杨芷柔,张虎等,2020. 基于复杂网络的军事通信网络建模与性能分析. 系统工程与电子技术,42(12):2892−2898. doi: 10.3969/j.issn.1001-506X.2020.12.27

    Liu T. L., Yang Z. R., Zhang H., et al., 2020. Modeling and performance analysis of military communication network based on complex network. Systems Engineering and Electronics, 42(12): 2892−2898. (in Chinese) doi: 10.3969/j.issn.1001-506X.2020.12.27
    刘欣,徐桂琼,杨平乐,2019. 基于组合赋权VIKOR方法的网络节点重要性评价. 计算机应用研究,36(8):2368−2371,2377.

    Liu X., Xu G. Q., Yang P. L., 2019. Node importance evaluating of network based on combination weighting VIKOR method. Application Research of Computers, 36(8): 2368−2371,2377. (in Chinese)
    罗海秀,赵海兴,肖玉芝等,2021. 基于超图的公交超网络拓扑特性及鲁棒性分析. 西南大学学报(自然科学版),43(10):181−191.

    Luo H. X., Zhao H. X., Xiao Y. Z., et al., 2021. A hypergraph-based analysis of the topology and robustness of bus hypernetworks. Journal of Southwest University (Natural Science Edition), 43(10): 181−191. (in Chinese)
    权治,李艳冠,李保罡等,2022. 空中应急通信网络中基于多属性的关键节点识别. 无线电工程,52(5):904−910. doi: 10.3969/j.issn.1003-3106.2022.05.027

    Quan Z., Li Y. G., Li B. G., et al., 2022. Key node identification based on multiple attributes in air emergency communication network. Radio Engineering, 52(5): 904−910. (in Chinese) doi: 10.3969/j.issn.1003-3106.2022.05.027
    田文,方琴,周雪芳等,2025. 航路网络关键节点的识别方法. 西南交通大学学报,60(1):1−10.

    Tian W., Fang Q., Zhou X. F., et al., 2025. Identification method for key nodes in en-route network. Journal of Southwest Jiaotong University, 60(1): 1−10. (in Chinese)
    汪小帆,李翔,陈关荣,2006. 复杂网络理论及其应用. 北京:清华大学出版社.
    吴晨,董吉文,房晓亮等,2013. 地震行业信息安全体系建设. 地震地磁观测与研究,34(3-4):245−251.

    Wu C., Dong J. W., Fang X. L., et al., 2013. Earthquake profession information security system construction research. Seismological and Geomagnetic Observation and Research, 34(3-4): 245−251. (in Chinese)
    吴凌杰,孟真,严俊峰,2022. 基于混合加密API算法对地震数据安全传输的研究. 华南地震,42(2):46−52.

    Wu L. J., Meng Z., Yan J. F., 2022. A study on secure transmission of seismic data based on hybrid encryption API algorithm. South China Journal of Seismology, 42(2): 46−52. (in Chinese)
    徐凤,朱金福,陈丹,2023. 东航空铁联运双层加权网络的关键节点识别与抗毁性分析. 铁道运输与经济,45(1):93−100.

    Xu F., Zhu J. F., Chen D., 2023. Identification of key nodes and invulnerability analysis of double-layer weighted network of air-rail inter-modal transport by China eastern airlines. Railway Transport and Economy, 45(1): 93−100. (in Chinese)
    于会,刘尊,李勇军,2013. 基于多属性决策的复杂网络节点重要性综合评价方法. 物理学报,62(2):020204. doi: 10.7498/aps.62.020204

    Yu H., Liu Z., Li Y. J., 2013. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 62(2): 020204. (in Chinese) doi: 10.7498/aps.62.020204
    周苗,杨家海,刘洪波等,2009. Internet网络拓扑建模. 软件学报,20(1):109−123. doi: 10.3724/SP.J.1001.2009.00109

    Zhou M., Yang J. H., Liu H. B., et al., 2009. Modeling the complex Internet topology. Journal of Software, 20(1): 109−123. (in Chinese) doi: 10.3724/SP.J.1001.2009.00109
    朱沁雨,曹延华,陶海成等,2022. 低轨星座网络拓扑的抗毁性研究进展. 计算机工程与应用,58(17):1−12. doi: 10.3778/j.issn.1002-8331.2203-0316

    Zhu Q. Y., Cao Y. H., Tao H. C., et al., 2022. Research progress on survivability of low-orbit constellation network topology. Computer Engineering and Applications, 58(17): 1−12. (in Chinese) doi: 10.3778/j.issn.1002-8331.2203-0316
    Bian T. , Deng Y. , 2017. A new evidential methodology of identifying influential nodes in complex networks. Chaos, Solitons & Fractals, 103 : 101−110.
    Chen D. B., Lü L. Y., Shang M. S., et al., 2012. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4): 1777−1787. doi: 10.1016/j.physa.2011.09.017
    Chen Z. H., Wu J. J., Xia Y. X., et al., 2018. Robustness of interdependent power grids and communication networks: a complex network perspective. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(1): 115−119.
    Heegaard P. E., Trivedi K. S., 2009. Network survivability modeling. Computer Networks, 53(8): 1215−1234. doi: 10.1016/j.comnet.2009.02.014
    Hu J. T., Du Y. X., Mo H. M., et al., 2016. A modified weighted TOPSIS to identify influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 444: 73−85. doi: 10.1016/j.physa.2015.09.028
    Hu P., Fan W. L., Mei S. W., 2015. Identifying node importance in complex networks. Physica A: Statistical Mechanics and its Applications, 429: 169−176. doi: 10.1016/j.physa.2015.02.002
    Kourtellis N., Alahakoon T., Simha R., et al., 2013. Identifying high betweenness centrality nodes in large social networks. Social Network Analysis and Mining, 3(4): 899−914. doi: 10.1007/s13278-012-0076-6
    Liu Z. H., Jiang C., Wang J. Y., et al., 2015. The node importance in actual complex networks based on a multi-attribute ranking method. Knowledge-Based Systems, 84: 56−66. doi: 10.1016/j.knosys.2015.03.026
    Motter A. E., Lai Y. C., 2002. Cascade-based attacks on complex networks. Physical Review E, 66(6): 065102. doi: 10.1103/PhysRevE.66.065102
    Peng G. S., Wu J., 2016. Optimal network topology for structural robustness based on natural connectivity. Physica A: Statistical Mechanics and its Applications, 443: 212−220. doi: 10.1016/j.physa.2015.09.023
    Pu C. L., Yang J., Pei W. J., et al., 2013. Robustness analysis of static routing on networks. Physica A: Statistical Mechanics and its Applications, 392(15): 3293−3300. doi: 10.1016/j.physa.2013.03.059
    Wei D. Q., Luo X. S., Zhang B., 2012. Analysis of cascading failure in complex power networks under the load local preferential redistribution rule. Physica A: Statistical Mechanics and its Applications, 391(8): 2771−2777. doi: 10.1016/j.physa.2011.12.030
    Wei M. K., Lu Z., Wang W. Y., 2018. On characterizing information dissemination during city-wide cascading failures in smart grid. IEEE Systems Journal, 12(4): 3404−3413. doi: 10.1109/JSYST.2017.2763462
    Xia Y. X., Fan J., Hill D., 2010. Cascading failure in Watts-Strogatz small-world networks. Physica A: Statistical Mechanics and its Applications, 389(6): 1281−1285. doi: 10.1016/j.physa.2009.11.037
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回