Experimental Studies on Seismic Behavior of Double-Skin-Composite Shear Walls
-
摘要: 双钢板-混凝土剪力墙在工程中被广泛应用,但国内对超高层建筑双钢板-混凝土剪力墙面内抗剪性能的研究相对较少。本文根据实际工程制作了6组1:3缩尺比例的中低剪跨比双钢板-混凝土剪力墙试件,开展了面内低周水平往复加载拟静力试验,得到了试件的滞回曲线等主要特性曲线,并分析了轴压比、钢板与混凝土墙间的连接形式等因素对双钢板-混凝土剪力墙抗剪性能的影响。试验结果表明:6组试件都呈现出剪切破坏特征;钢板与混凝土之间剪力连接件中对拉钢筋所占比例对试件的面内抗剪性能影响较小;试件的变形能力和延性随轴压比的增大而减小,在试件加载后期,轴压比越大的试件等效黏滞阻尼系数越大;混凝土强度对试件加载初期的变形能力影响较大,但对极限状态下的变形能力影响较小;剪跨比对墙体变形能力、承载力和刚度影响明显;试件的耗能曲线均呈指数型增长,表明双钢板-混凝土剪力墙抗震性能更优越。
-
关键词:
- 双钢板-混凝土剪力墙 /
- 拟静力试验 /
- 抗剪性能 /
- 抗剪承载力 /
- 延性
Abstract: Double-skin composite shear walls are widely used in buildings, but studies on their shear performance in super high-rise buildings in China are relatively scarce. This paper presents an investigation of six middle-shear-span and low-shear-span ratio double-skin composite shear wall specimens (1:3 scale), subjected to quasi-static tests under low cyclic lateral loads. The hysteretic loops and other key properties of the specimens were analyzed. Factors such as axial compression ratio and the type of connection between the steel plate and concrete wall were also examined. The results show that shear failure is the dominant failure mode. The proportion of rebar in the connections between the steel plates and concrete walls has little effect on the seismic behavior of the specimens. As the axial compression ratio increases, deformation performance and ductility decrease. In the later stages of loading, specimens with higher axial compression ratios exhibit a larger equivalent adhesive damping coefficient. Concrete strength significantly affects the deformation capacity during the initial loading phase, but has minimal influence on deformation in the ultimate state. The shear span ratio influences the wall’s deformation capacity, bearing capacity, and stiffness. Additionally, cumulative energy dissipation increases exponentially with the number of loading cycles, indicating strong seismic performance. -
表 1 试验墙体参数
Table 1. Parameters of the tested walls
试验墙体
编号墙体高度/m 剪跨比 混凝土强度/
N·mm−2轴压比
设计值轴压比
试验值端柱 墙体 矩形钢管截面
尺寸/m对拉钢
筋设置栓钉与对拉
钢筋间距/m钢板厚/m 距厚比 SCW01 0.6 1.0 40 0.36 0.22 0.125×0.16 — 0.1 0.004 25 SCW02 0.6 1.0 40 0.36 0.19 0.125×0.16 $ 6\Phi28 $ 0.1 0.004 25 SCW03 0.6 1.0 40 0.36 0.17 0.125×0.16 $ 6\Phi 28 $ 0.1 0.004 25 SCW04 0.6 1.0 40 0.72 0.35 0.125×0.16 $ 6\Phi 28 $ 0.1 0.004 25 SCW05 0.6 1.0 60 0.36 0.19 0.125×0.16 $ 6\Phi 28 $ 0.1 0.004 25 SCW06 0.975 1.5 40 0.36 0.18 0.125×0.16 $ 6\Phi 28 $ 0.1 0.004 25 表 2 试验得到的钢板材性
Table 2. Results of the material properties from tests on steel plates
名义厚度t/m 实测厚度${t_{\text{t}}}$/m ${f_{{\text{y,t}}}}$/N·mm−2 $ {f_{{\text{u,t}}}} $/N·mm−2 ${\varepsilon _{{\text{y,t}}}}$/% ${\varepsilon _{{\text{u,t}}}}$/% $\delta $/% 0.004 0.00374 289 437 0.23 21.68 34.67 表 3 主要试验结果
Table 3. Main results of tests
试件墙体
编号加载
方向屈服状态 峰值状态 极限状态 $\mu $ ${\varDelta _{\text{y}}}{\text{/m}}$ ${P_{\text{y}}}{\text{/N}}$ ${\theta _{\text{y}}}$ ${\varDelta _{\text{p}}}{\text{/m}}$ ${P_{\text{p}}}{\text{/N}}$ ${\theta _{\text{p}}}$ $ {\varDelta _{\text{u}}}{\text{/m}} $ ${P_{\text{u}}}{\text{/N}}$ ${\theta _{\text{u}}}$ SCW01 + 0.00622 1576000 $1/116$ 0.01135 1927000 $1/69$ 0.01546 1638000 $1/50$ 2.32 − − 0.00673 − 1497000 − 0.01035 − 1792000 − 0.01441 − 1523000 SCW02 + 0.00680 1532000 $1/117$ 0.01292 1875000 $1/62$ 0.01737 1594000 $1/45$ 2.60 − − 0.00603 − 1497000 − 0.01147 − 1874000 − 0.01593 − 1593000 SCW03 + 0.00672 1566000 $1/114$ 0.01227 1957000 $1/65$ 0.01639 1663000 $1/44$ 2.59 − − 0.00640 − 1527000 − 0.01075 − 1848000 − 0.01780 − 1570000 SCW04 + 0.00582 1435000 $1/133$ 0.01128 1793000 $1/75$ 0.01647 1524000 $1/50$ 2.66 − − 0.00543 − 1438000 − 0.00879 − 1756000 − 0.01374 − 1493000 SCW05 + 0.00608 1532000 $1/145$ 0.01111 1875000 $1/71$ 0.01608 1594000 $1/46$ 3.15 − − 0.00428 − 1388000 − 0.01001 − 1741000 − 0.01683 − 1480000 SCW06 + 0.01118 1254000 $1/105$ 0.02295 1574000 $1/51$ 0.03557 1338000 $1/33$ 3.18 − − 0.01025 1251000 − 0.02112 − 1576000 − 0.03251 − 1340000 -
丁朝辉,江欢成,曾菁等,2011. 双钢板-混凝土组合墙的大胆尝试−−盐城电视塔结构设计. 建筑结构,41(12):87−91.Ding Z. H., Jiang H. C., Zeng J., et al., 2011. An innovative application of SCS composite wall: structural design of Yancheng TV Tower. Building Structure, 41(12): 87−91. (in Chinese) 丁洁民,巢斯,吴宏磊等,2011. 组合结构构件在上海中心大厦中的应用与研究. 建筑结构,41(12):61−67.Ding J. M., Chao S., Wu H. L., et al., 2011. Application and research of steel-concrete mixed structure in Shanghai Tower. Building Structure, 41(12): 61−67. (in Chinese) 纪晓东,蒋飞明,钱稼茹等,2013. 钢管-双层钢板-混凝土组合剪力墙抗震性能试验研究. 建筑结构学报,34(6):75−83.Ji X. D., Jiang F. M., Qian J. R., et al., 2013. Experimental study on seismic behavior of steel tube-double steel plate-concrete composite shear walls. Journal of Building Structures, 34(6): 75−83. (in Chinese) 纪晓东,贾翔夫,钱稼茹,2015. 钢板混凝土剪力墙抗剪性能试验研究. 建筑结构学报,36(11):46−55.Ji X. D., Jia X. F., Qian J. R., 2015. Experimental study on shear behavior of steel-plate composite shear walls. Journal of Building Structures, 36(11): 46−55. (in Chinese) 李健,罗永峰,郭小农等,2013. 双层钢板组合剪力墙抗震性能试验研究. 同济大学学报(自然科学版),41(11):1636−1643.Li J., Luo Y. F., Guo X. N., et al., 2013. Experimental research on seismic behavior of double skin composite shear wall. Journal of Tongji University (Natural Science), 41(11): 1636−1643. (in Chinese) 李晓虎,李小军,申丽婷等,2016. 核岛结构双钢板混凝土组合剪力墙低周往复试验研究. 北京工业大学学报,42(10):1498−1508.Li X. H., Li X. J., Shen L. T., et al., 2016. Experimental study of composite shear walls with double steel plates and filled concrete for a nuclear island structure under low cyclic loading. Journal of Beijing University of Technology, 42(10): 1498−1508. (in Chinese) 刘鸿亮,蔡健,杨春等,2013. 带约束拉杆双层钢板内填混凝土组合剪力墙抗震性能试验研究. 建筑结构学报,34(6):84−92.Liu H. L., Cai J., Yang C., et al., 2013. Experimental study on seismic behavior of composite shear wall with double steel plates and infill concrete with binding bars. Journal of Building Structures, 34(6): 84−92. (in Chinese) 刘晶波,王冬亮,王宗纲等,2019. 核工程双钢板-混凝土组合剪力墙面内受剪性能试验研究. 地震工程与工程振动,39(5):19−27.Liu J. B., Wang D. L., Wang Z. G., et al., 2019. Experimental study on in-plane shear behavior of double-skin-composite shear walls in nuclear engineering. Earthquake Engineering and Engineering Dynamics, 39(5): 19−27. (in Chinese) 刘阳冰,杨庆年,刘晶波等,2016. 双钢板-混凝土剪力墙轴心受压性能试验研究. 四川大学学报(工程科学版),48(2):83−90.Liu Y. B., Yang Q. N., Liu J. B., et al., 2016. Experimental research on axial compressive behavior of shear wall with double steel plates and filled concrete. Journal of Sichuan University (Engineering Science Edition), 48(2): 83−90. (in Chinese) 聂建国,卜凡民,樊健生,2011. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究. 建筑结构学报,32(11):74−81.Nie J. B., Bu F. M., Fan J. S., 2011. Experimental research on seismic behavior of low shear-span ratio composite shear wall with double steel plates and infill concrete. Journal of Building Structures, 32(11): 74−81. (in Chinese) 唐九如,1989. 钢筋混凝土框架节点抗震. 南京:东南大学出版社. 朱立猛,周德源,赫明月,2013. 带约束拉杆钢板-混凝土组合剪力墙抗震性能试验研究. 建筑结构学报,34(6):93−102.Zhu L. M., Zhou D. Y., Hao M. Y., 2013. Experimental research on seismic behavior of composite concrete and steel plate shear walls with binding bars. Journal of Building Structures, 34(6): 93−102. (in Chinese) Anwar Hossain K. M., Wright H. D., 2004. Experimental and theoretical behaviour of composite walling under in-plane shear. Journal of Constructional Steel Research, 60(1): 59−83. doi: 10.1016/j.jcsr.2003.08.004 Emori K., 2002. Compressive and shear strength of concrete filled steel box wall. International Journal of Steel Structures, 2(1): 29−40. Faghih F., Ayoub A. S., 2019. Structural performance of steel-concrete sandwich beams with carbon nanofiber reinforcement. Engineering Structures, 187: 177−198. doi: 10.1016/j.engstruct.2019.02.051 Kim H. J., Park H. G., 2022. Cyclic loading test for composite walls with U-shaped steel boundary elements. Journal of Structural Engineering, 148(1): 04021241. doi: 10.1061/(ASCE)ST.1943-541X.0003217 Kim H. J., Park H. G., 2023. Flexural test for steel-concrete composite walls (aspect ratio 2.0) with steel U-Section boundary element. Journal of Building Engineering, 66: 105824. doi: 10.1016/j.jobe.2023.105824 Park R., Priestley M. J. N., Gill W. D., 1982. Ductility of square-confined concrete columns. Journal of the Structural Division, 108(4): 929−950. doi: 10.1061/JSDEAG.0005933 Takeda T. , Yamaguchi T. , Nakayama T. , et al. , 1995. Experimental study on shear characteristics of a concrete filled steel plate wall. In: Transactions of the 13th International Conference on Structural Mechanics in Reactor Technology. Porto Alegre, Brazil: IASMiRT. Takeuchi M., Narikawa M., Matsuo I., et al., 1998. Study on a concrete filled structure for nuclear power plants. Nuclear Engineering and Design, 179(2): 209−223. doi: 10.1016/S0029-5493(97)00282-3 Usami S. , Hara K. , Sasaki N. , et al. , 1995. Study on a concrete filled steel structure for nuclear power plants (Part 2). Compressive loading tests on wall members. In: Transactions of the 13th International Conference on Structural Mechanics in Reactor Technology. Porto Alegre, Brazil: IASMiRT. Wen C. B., Guo Y. L., Sun H. J., et al., 2023. Experimental and numerical study on seismic performance of concrete-infilled double steel corrugated-plate walls. Journal of Building Engineering, 68: 106171. doi: 10.1016/j.jobe.2023.106171 Wright H., 1998. The axial load behaviour of composite walling. Journal of Constructional Steel Research, 45(3): 353−375. doi: 10.1016/S0143-974X(97)00030-8 Yang Y., Liu J. B., Nie X., et al., 2016. Experimental research on out-of-plane cyclic behavior of steel-plate composite walls. Journal of Earthquake and Tsunami, 10(1): 1650001. doi: 10.1142/S1793431116500019 -