• ISSN 1673-5722
  • CN 11-5429/P

CFRP布加固的地铁地下车站结构中柱抗震性能研究

姚凡夫 杨帆 庄海洋

姚凡夫,杨帆,庄海洋,2024. CFRP布加固的地铁地下车站结构中柱抗震性能研究. 震灾防御技术,19(4):754−762. doi:10.11899/zzfy20240412. doi: 10.11899/zzfy20240412
引用本文: 姚凡夫,杨帆,庄海洋,2024. CFRP布加固的地铁地下车站结构中柱抗震性能研究. 震灾防御技术,19(4):754−762. doi:10.11899/zzfy20240412. doi: 10.11899/zzfy20240412
Yao Fanfu, Yang Fan, Zhuang Haiyang. Seismic Performance of Middle Columns in Subway Station Structures Strengthened with CFRP Sheets[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 754-762. doi: 10.11899/zzfy20240412
Citation: Yao Fanfu, Yang Fan, Zhuang Haiyang. Seismic Performance of Middle Columns in Subway Station Structures Strengthened with CFRP Sheets[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 754-762. doi: 10.11899/zzfy20240412

CFRP布加固的地铁地下车站结构中柱抗震性能研究

doi: 10.11899/zzfy20240412
基金项目: 国家自然科学基金面上项目(52378397、51978333)
详细信息
    作者简介:

    姚凡夫,男,生于1999年。硕士研究生。主要从事地下结构抗震减灾研究。E-mail:862782543@qq.com

    通讯作者:

    庄海洋,男,生于1978年。教授。主要从事地下结构抗震与韧性提升研究。E-mail:3377@ecjtu.edu.cn

Seismic Performance of Middle Columns in Subway Station Structures Strengthened with CFRP Sheets

  • 摘要: 现浇地铁地下车站结构中柱柱端往往是抗震薄弱区域,采用在中柱顶底端对称包裹CFRP布的加固方法,并基于ABAQUS软件,建立了土-地下结构非线性静动力耦合相互作用的三维有限元分析模型,通过设置不同CFRP布包裹范围及层数的数值模型,研究其对加固效果的影响。研究结果表明,CFRP布可在不改变中柱侧向刚度的情况下增强中柱抗侧向变形能力,同时CFRP布能够减轻中柱顶底端核心混凝土剪切破坏,使震后中柱仍具有一定的承载力,提升了中柱延性。相同地震动输入条件下,CFRP布加固柱核心区混凝土损伤、残余侧向变形及塑性变形较未加固柱有明显改善,抗震性能有明显提高。CFRP布加固效果不会随着包裹范围和层数的增加始终保持线性增长,存在最优值使地下车站结构中柱抗震性能达到最佳,因此建议中柱顶底端CFRP布总包裹范围为中柱高度的1/2,包裹层数为5层。
  • 图  1  大开车站结构尺寸参数

    Figure  1.  Size parameters of the Kobe Dakai station structure

    图  2  土-地下结构动力相互作用体系有限元模型

    Figure  2.  Finite element model for soil-subway station dynamic interaction system

    图  3  中柱核心区混凝土损伤(PBA=0.3 g,Kobe波)

    Figure  3.  Concrete damage in the core area of the middle column under 0.3 g Kobe wave

    图  4  中柱变形时程曲线(PBA=0.3 g、Kobe波)

    Figure  4.  Time histories of deformation of the middle column under 0.3 g Kobe wave

    图  5  中柱等效塑性应变(PBA=0.3 g、Kobe波)

    Figure  5.  Equivalent plastic strain in the middle column under 0.3 g Kobe wave

    图  6  中柱变形时程曲线(PBA=0.3 g、Kobe波)

    Figure  6.  Time histories of deformation of the middle column under 0.3 g Kobe wave

    图  7  中柱等效塑性应变(PBA=0.3 g、Kobe波)

    Figure  7.  Equivalent plastic strain in the middle column under 0.3 g Kobe wave

    表  1  大开单层车站土层主要物理力学参数

    Table  1.   Material parameters for soil

    土质 深度/m 密度/(kg·m−3 ) 剪切波速/(m·s−1) 泊松比 黏聚力/kPa 内摩擦角/(°)
    人工填土 0~1.0 1 900 140 0.333 20 15
    全新世砂土 1.0~5.1 1 900 140 0.488 1 40
    全新世砂土 5.1~8.3 1 900 170 0.493 1 40
    更新世黏土 8.3~11.4 1 900 190 0.494 30 20
    更新世黏土 11.4~17.2 1 900 240 0.490 30 20
    更新世砂土 17.2~39.2 2 000 330 0.497 1 40
    下载: 导出CSV

    表  2  模拟工况设计

    Table  2.   Simulation of the working condition

    组号编号配布情况
    bn
    A组A100
    B组B11/85
    B21/25
    B315
    C组C113
    C217
    下载: 导出CSV

    表  3  不同CFRP布包裹范围中柱残余侧向变形

    Table  3.   Residual deformation of columns in different CFRP cloth wrapping ranges

    地震动 PBA/g 残余侧向变形/mm 残余侧向变形衰减百分比/% 等效塑性变形/% 等效塑性变形衰减百分比/%
    n=0
    b=0
    n=5
    b=1/8
    n=5
    b=1/2
    n=5
    b=1
    n=0
    b=0
    n=5
    b=1/8
    n=5
    b=1/2
    n=5
    b=1
    n=0
    b=0
    n=5
    b=1/8
    n=5
    b=1/2
    n=5
    b=1
    n=0
    b=0
    n=5
    b=1/8
    n=5
    b=1/2
    n=5
    b=1
    Kobe波0.12.572.331.431.4909.344.342.00.190.170.120.13010.536.831.6
    0.24.133.671.972.03011.152.350.80.320.280.190.19012.540.640.6
    0.36.715.892.833.13012.257.853.40.540.470.310.32012.942.640.7
    卧龙波0.11.030.920.470.48010.754.453.40.080.070.060.05012.525.037.5
    0.22.702.401.231.25011.054.553.70.210.170.120.13014.342.938.1
    0.34.063.541.831.85012.854.954.40.310.260.170.18015.045.241.9
    什邡八角波0.12.492.221.311.39010.847.444.20.180.160.110.12011.138.933.3
    0.24.073.541.841.85013.154.854.80.310.250.160.18019.448.441.9
    0.36.115.012.522.60018.058.857.40.490.390.250.27020.450.044.9
    下载: 导出CSV

    表  4  不同CFRP布包裹层数中柱的残余侧向变形

    Table  4.   Residual deformation of columns in different CFRP cloth wrapping layers

    地震动 PBA/g 残余侧向变形/mm 残余侧向变形衰减百分比/% 等效塑性变形/% 等效塑性变形衰减百分比/%
    n=0
    b=0
    n=3
    b=1
    n=7
    b=1
    n=5
    b=1
    n=0
    b=0
    n=3
    b=1
    n=7
    b=1
    n=5
    b=1
    n=0
    b=0
    n=3
    b=1
    n=7
    b=1
    n=5
    b=1
    n=0
    b=0
    n=3
    b=1
    n=7
    b=1
    n=5
    b=1
    Kobe波0.12.572.221.481.49013.642.442.00.190.170.120.13010.536.831.6
    0.24.133.562.032.03013.850.850.80.320.270.190.19015.640.640.6
    0.36.715.583.153.13014.253.153.40.540.440.320.32018.540.740.7
    卧龙波0.11.030.940.480.4808.753.453.40.080.070.050.05012.537.537.5
    0.22.702.391.651.25011.538.953.70.210.180.120.13014.342.938.1
    0.34.063.451.821.85015.055.254.40.310.260.160.18015.048.441.9
    什邡八角波0.12.492.141.371.39014.145.044.20.180.170.110.1205.638.933.3
    0.24.073.451.851.85015.254.554.80.310.270.180.18014.841.941.9
    0.36.115.172.592.60015.457.657.40.490.380.270.27022.444.944.9
    下载: 导出CSV
  • 董振华,杜修力,韩强,2013. FRP加固钢筋混凝土墩柱抗震性能研究综述. 建筑科学与工程学报,30(2):55−64.

    Dong Z. H., Du X. L., Han Q., 2013. Review of research on seismic performance of RC columns strengthened with FRP. Journal of Architecture and Civil Engineering, 30(2): 55−64. (in Chinese)
    杜修力,马超,路德春等,2017. 大开地铁车站地震破坏模拟与机理分析. 土木工程学报,50(1):53−62,69.

    Du X. L., Ma C., Lu D. C., et al., 2017. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads. China Civil Engineering Journal, 50(1): 53−62,69. (in Chinese)
    杜修力,李洋,许成顺等,2018. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展. 岩土工程学报,40(2):223−236.

    Du X. L., Li Y., Xu C. S., et al., 2018. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake. Chinese Journal of Geotechnical Engineering, 40(2): 223−236. (in Chinese)
    杜修力,许紫刚,许成顺等,2019. 摩擦摆支座在地下地铁车站结构中的减震效果研究. 工程力学,36(9):60−67,88.

    Du X. L., Xu. Z. G., Xu. C. S., et al., 2019. Seismic mitigation effect analysis on friction pendulum bearingapplied in the underground subway station. Engineering Mechanics, 36(9): 60−67,88. (in Chinese)
    楼梦麟,王文剑,朱彤等,2000. 土−结构体系振动台模型试验中土层边界影响问题. 地震工程与工程振动,20(4):30−36.

    Lou M. L., Wang W. J., Zhu T., et al., 2000. Soil lateral boundary effect in shaking table model test of soil-structure system. Earthquake Engineering and Engineering Vibration, 20(4): 30−36. (in Chinese)
    杨靖,云龙,庄海洋等,2020. 三层三跨框架式地铁地下车站结构抗震性能水平研究. 岩土工程学报,42(12):2240−2248.

    Yang J., Yun L., Zhuang H. Y., et al., 2020. Seismic performance levels of frame−type subway underground station with three layers and three spans. Chinese Journal of Geotechnical Engineering, 42(12): 2240−2248. (in Chinese)
    叶列平,赵树红,李全旺等,2000. 碳纤维布加固混凝土柱的斜截面受剪承载力计算. 建筑结构学报,21(2):59−67.

    Ye L. P., Zhao S. H., Li Q. W., et al., 2000. Calculation of shear strength of concrete column strengthened with carbon fiber reinforced plastic sheet. Journal of Building Structures, 21(2): 59−67. (in Chinese)
    赵树红,叶列平,张轲等,2001. 碳纤维布对混凝土柱抗震加固的试验分析. 建筑结构,31(12):17−19.

    Zhao S. H., Ye L. P., Zhang K., et al, 2001. Experimental study on aseismic strengthening of RC columns with wrapped CFRP sheets. Building Structure, 31(12): 17−19. (in Chinese)
    庄海洋,陈国兴,朱定华,2006. 土体动力黏塑性记忆型嵌套面本构模型及其验证. 岩土工程学报,28(10):1267−1272.

    Zhuang H. Y., Chen G. X., Zhu D. H., 2006. Dynamic visco-plastic memorial nested yield surface model of soil and its verification. Chinese Journal of Geotechnical Engineering, 28(10): 1267−1272. (in Chinese)
    庄海洋,程绍革,陈国兴,2008. 阪神地震中大开地铁车站震害机制数值仿真分析. 岩土力学,29(1):245−250.

    Zhuang H. Y., Cheng S. G., Chen G. X., 2008. Numerical simulation and analysis of earthquake damages of Dakai metro station caused by Kobe earthquake. Rock and Soil Mechanics, 29(1): 245−250. (in Chinese)
    庄海洋,吴祥祖,陈国兴,2011. 考虑初始静应力状态的土−地下结构非线性静、动力耦合作用研究. 岩石力学与工程学报,30(S1):3112−3119.

    Zhuang H. Y., Wu X. Z., Chen G. X., 2011. Study of nonlinear static and dynamic coupling interaction of soil-underground structure considering initial static stress. Chinese Journal of Rock Mechanics and Engineering, 30(S1): 3112−3119. (in Chinese)
    Hollaway L. C. , Teng J. G. , 2008. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. Sutton, UK: Woodhead Publishing.
    Kuhlemeyer R. L., Lysmer J., 1973. Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, 99(5): 421−427. doi: 10.1061/JSFEAQ.0001885
    Ma C., Lu D. C., Du X. L., et al., 2019. Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes. Soil Dynamics and Earthquake Engineering, 119: 265−280. doi: 10.1016/j.soildyn.2019.01.017
    Nanni A., Norris M. S., 1995a. FRP jacketed concrete under flexure and combined flexure-compression. Construction and Building Materials, 9(5): 273−281 doi: 10.1016/0950-0618(95)00021-7
    Nanni A., Bradford N. M., 1995b. FRP jacketed concrete under uniaxial compression. Construction and Building Materials, 9(2): 115−124. doi: 10.1016/0950-0618(95)00004-Y
    Lee J., Fenves G. L., 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8): 892−900 doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    Lubliner J., Oliver J., Oller S., et al., 1989. A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3): 299−326 doi: 10.1016/0020-7683(89)90050-4
    Zhuang H. Y., Hu Z. H., Chen G. X., 2015. Numerical modeling on the seismic responses of a large underground structure in soft ground. Journal of Vibroengineering, 17(2): 802−815.
    Zhuang H. Y., Yang J., Chen S., et al., 2021. Statistical numerical method for determining seismic performance and fragility of shallow-buried underground structure. Tunnelling and Underground Space Technology, 116: 104090. doi: 10.1016/j.tust.2021.104090
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回