• ISSN 1673-5722
  • CN 11-5429/P

正断层错动下海底矿山法隧道变形缝合理设置形式研究

魏景

魏景,2024. 正断层错动下海底矿山法隧道变形缝合理设置形式研究. 震灾防御技术,19(4):747−753. doi:10.11899/zzfy20240411. doi: 10.11899/zzfy20240411
引用本文: 魏景,2024. 正断层错动下海底矿山法隧道变形缝合理设置形式研究. 震灾防御技术,19(4):747−753. doi:10.11899/zzfy20240411. doi: 10.11899/zzfy20240411
Wei Jing. Research on the Rational Setting of Deformation Joints in Submarine Mining Tunnel under Normal Fault Dislocation[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 747-753. doi: 10.11899/zzfy20240411
Citation: Wei Jing. Research on the Rational Setting of Deformation Joints in Submarine Mining Tunnel under Normal Fault Dislocation[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 747-753. doi: 10.11899/zzfy20240411

正断层错动下海底矿山法隧道变形缝合理设置形式研究

doi: 10.11899/zzfy20240411
详细信息
    作者简介:

    魏景,女,生于1980年。高级工程师。主要从事隧道设计工作。E-mail:7042086@qq.com

  • 11 中铁第四勘察设计院集团有限公司,2018.《胶州湾第二海底隧道工程场地地震安全性评价报告》
  • 22 中铁第四勘察设计院集团有限公司,2018.《青岛第二海底隧道工程可行性研究报告》

Research on the Rational Setting of Deformation Joints in Submarine Mining Tunnel under Normal Fault Dislocation

  • 摘要: 我国地理地质条件复杂多样,断裂带分布广泛,隧道建设常不可避免地穿越活动断裂带。本文以胶州湾第二海底隧道工程为背景,建立隧道-断层三维有限元模型,研究正断层作用下隧道变形缝设置形式(垂直设缝和斜向设缝)、模筑长度(6、12 m)和变形缝宽度(0.1、0.2 m)对跨断层隧道在断层错动作用下的结构受力及位移影响。研究结果表明,垂直设缝既增强隧道的抗断错能力,又适用于工程实际施工;相较于模筑长度为12 m的变形缝间距,模筑长度为6 m的变形缝间距对隧道错台变形有明显的抑制作用,能有效缓解隧道与断层带交界处错台量突变;本工程中变形缝宽度为0.1、0.2 m无明显优劣。
    1)  11 中铁第四勘察设计院集团有限公司,2018.《胶州湾第二海底隧道工程场地地震安全性评价报告》
    2)  22 中铁第四勘察设计院集团有限公司,2018.《青岛第二海底隧道工程可行性研究报告》
  • 图  1  数值模型

    Figure  1.  Schematic diagram of numerical model

    图  2  计算工况

    Figure  2.  Schematic diagram of calculation conditions

    图  3  断层带隧道结构变形

    Figure  3.  Structural deformation diagram of tunnel in fault zone

    图  4  不同设缝形式下的隧道结构变形缝错台量

    Figure  4.  Deformation joint misalignment of tunnel structures with different joint forms

    图  5  断层带隧道结构变形

    Figure  5.  Structural deformation diagram of tunnel in fault zone

    图  6  不同模筑长度下隧道结构变形缝错台量

    Figure  6.  Deformation joint misalignment of tunnel structures with different formwork length

    图  7  不同变形缝宽度下隧道结构变形缝错台量(模筑长度12 m)

    Figure  7.  Displacement of deformation joints in tunnel structures with different widths of deformation joints (With a molded length of 12 m)

    图  8  不同变形缝宽度下隧道结构变形缝错台量(模筑长度12 m)

    Figure  8.  Displacement of deformation joints in tunnel structures with different widths of deformation joints (With a molded length of 12 m)

    表  1  地层物理力学参数

    Table  1.   Physical and mechanical parameters of stratum

    岩土名称 厚度/m 容重/(kN·m−3) 泊松比 弹性模量/MPa 黏聚力/kPa 内摩擦角/(°)
    淤泥 15 18 0.4 5 15 2
    粉质黏土 25 20 0.3 30 17 7
    中风化花岗岩 60 24.8 0.25 15 000
    中风化正长岩 30 26 0.2 12 000
    断层破碎带 26 0.35 200 18 50
    下载: 导出CSV

    表  2  变形缝设计工况

    Table  2.   Design cases of deformation joints

    工况 隧道埋深/m 模筑长度/m 变形缝形式 变形缝宽度/m
    1 80 6 垂直隧道轴线 0.1
    2 80 6 垂直隧道轴线 0.2
    3 80 6 与隧道轴线斜交 0.1
    4 80 6 与隧道轴线斜交 0.2
    5 80 12 垂直隧道轴线 0.1
    6 80 12 垂直隧道轴线 0.2
    7 80 12 与隧道轴线斜交 0.1
    8 80 12 与隧道轴线斜交 0.2
    下载: 导出CSV
  • 耿萍,何悦,何川等,2014. 穿越断层破碎带隧道合理抗震设防长度研究. 岩石力学与工程学报,33(2):358−365.

    Geng P., He Y., He C., et al., 2014. Research on reasonable aseismic fortified length for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 33(2): 358−365. (in Chinese)
    梁文灏,李国良,2004. 乌鞘岭特长隧道方案设计. 现代隧道技术,41(2):1−7.

    Liang W. H., Li G. L., 2004. Tentative project of Wushaoling tunnel. Modern Tunnelling Technology, 41(2): 1−7. (in Chinese)
    刘学增,王煦霖,林亮伦,2013. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究. 岩石力学与工程学报,32(8):1714−1720.

    Liu X. Z., Wang X. L., Lin L. L., 2013. Model experiment on effect of normal fault with 75° dip angle stick-slip dislocation on highway tunnel. Chinese Journal of Rock Mechanics and Engineering, 32(8): 1714−1720. (in Chinese)
    刘学增,王煦霖,林亮伦,2014. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究. 土木工程学报,47(2):121−128.

    Liu X. Z., Wang X. L., Lin L. L., 2014. Model experimental study on influence of normal fault with 60° dip angle stick slip dislocation on mountain tunnel. China Civil Engineering Journal, 47(2): 121−128. (in Chinese)
    刘学增,刘金栋,李学锋等,2015. 逆断层铰接式隧道衬砌的抗错断效果试验研究. 岩石力学与工程学报,34(10):2083−2090.

    Liu X. Z., Liu J. D., Li X. F., et al., 2015. Experimental research on effect of anti-dislocation of highway tunnel lining with hinge joints in thrust fault. Chinese Journal of Rock Mechanics and Engineering, 34(10): 2083−2090. (in Chinese)
    孙飞,2019. 穿越活断层地铁隧道结构损伤破坏机理及抗错动性能研究. 成都:西南交通大学.

    Sun F., 2019. Study on damage and fracture mechanism and anti-displacement performance of metro tunnels passing through active faults. Chengdu:Southwest Jiaotong University. (in Chinese)
    杨晓芳,李玉倩,吴金刚,2022. 某高速深埋隧道断层构造带围岩变形破坏分析与防控. 公路交通科技,39(6):103−110,118.

    Yang X. F., Li Y. Q., Wu J. G., 2022. Analysis on deformation failure and prevention of surrounding rock in fault structural zone of a deep-buried tunnel on an expressway. Journal of Highway and Transportation Research and Development, 39(6): 103−110,118. (in Chinese)
    赵武胜,何先志,陈卫忠等,2012. 盾构隧道地震响应分析方法及工程应用. 岩土力学,33(8):2415−2421.

    Zhao W. S., He X. Z., Chen W. Z., et al., 2012. Method for analyzing seismic response of shield tunnel and its application. Rock and Soil Mechanics, 33(8): 2415−2421. (in Chinese)
    庄海洋,唐柏赞,余冰雁等,2023. 地下结构抗震与减隔震研究进展与展望. 震灾防御技术,18(1):1−12.

    Zhuang H. Y., Tang B. Z., Yu B. Y., et al., 2023. Review and prospect of earthquake resistance and seismic isolation of underground structures. Technology for Earthquake Disaster Prevention, 18(1): 1−12. (in Chinese)
    Anastasopoulos I., Gerolymos N., Drosos V., et al., 2008. Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking. Bulletin of Earthquake Engineering, 6(2): 213−239. doi: 10.1007/s10518-007-9055-0
    Bray J. D., Seed R. B., Cluff L. S., et al., 1994. Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3): 543−561. doi: 10.1061/(ASCE)0733-9410(1994)120:3(543)
    Parsons T., Stein R. S., Simpson R. W., et al., 1999. Stress sensitivity of fault seismicity: a comparison between limited-offset oblique and major strike-slip faults. Journal of Geophysical Research: Solid Earth, 104(B9): 20183−20202. doi: 10.1029/1999JB900056
    Sibson R. H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3): 191−213. doi: 10.1144/gsjgs.133.3.0191
    Wang Q., Geng P., Li P. S., et al., 2023. Failure analysis and dislocation-resistant design parameters of mining tunnel under normal faulting. Engineering Failure Analysis, 143: 106902. doi: 10.1016/j.engfailanal.2022.106902
    Zhong Z. L., Wang Z., Zhao M., et al., 2020. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement. Tunnelling and Underground Space Technology, 104: 103527. doi: 10.1016/j.tust.2020.103527
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-16
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回