• ISSN 1673-5722
  • CN 11-5429/P

极限状态认知不确定性对地震易损性的影响

王珊 张郁山

王珊,张郁山,2024. 极限状态认知不确定性对地震易损性的影响. 震灾防御技术,19(4):706−715. doi:10.11899/zzfy20240407. doi: 10.11899/zzfy20240407
引用本文: 王珊,张郁山,2024. 极限状态认知不确定性对地震易损性的影响. 震灾防御技术,19(4):706−715. doi:10.11899/zzfy20240407. doi: 10.11899/zzfy20240407
Wang Shan, Zhang Yushan. The Influence of Cognitive Uncertainty of Limit States on Seismic Vulnerability[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 706-715. doi: 10.11899/zzfy20240407
Citation: Wang Shan, Zhang Yushan. The Influence of Cognitive Uncertainty of Limit States on Seismic Vulnerability[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 706-715. doi: 10.11899/zzfy20240407

极限状态认知不确定性对地震易损性的影响

doi: 10.11899/zzfy20240407
基金项目: 国家重点研发计划(2019YFC1509401)
详细信息
    作者简介:

    王珊,女,生于1988年。高级工程师,硕士。主要从事地震工程方面的研究工作。E-mail:huli_077@163.com

    通讯作者:

    张郁山,男,生于1974年。研究员,博士。主要从事地震工程方面的研究工作。E-mail:hyszhang@163.com

  • 12 https://mp.weixin.qq.com/s/LuuJRpYU3XfcquwwoKMVfQ
  • 23 https://ngawest2.berkeley.edu/

The Influence of Cognitive Uncertainty of Limit States on Seismic Vulnerability

  • 摘要: 极限状态是依据结构损伤水平和工程经验进行划分的,工程经验的差异会对结构地震损伤极限状态的认知产生不确定性。本文以6层多自由度体系(MDOF)为例,选用最大层间位移角为结构损伤指标(DM),选用峰值加速度PGA和峰值速度PGV作为地震动强度指标(IM),基于OpenSees平台,通过增量动力分析方法(IDA),对MDOF体系进行地震易损性分析。研究结果表明,除“基本完好”和“轻微破坏”极限状态,不同的层间位移角限值会导致得到的结构地震易损性分析结果差异较大,这种差异性随着结构破坏程度的增加而增大,当达到“倒塌”极限状态时,结构损伤超越概率的差异达到了相当大的水平。因此,对最大层间位移角限值进行合理取值是开展结构抗震性能分析和地震损伤评估工作的基础。
    1)  12 https://mp.weixin.qq.com/s/LuuJRpYU3XfcquwwoKMVfQ
    2)  23 https://ngawest2.berkeley.edu/
  • 图  1  MDOF体系示意

    Figure  1.  Sketch diagram of MDOF system

    图  2  Steel 01材料本构模型示意

    Figure  2.  Sketch diaram of material constitutive model

    图  3  IDA曲线簇

    Figure  3.  IDA curve cluster

    图  4  结构损伤指标与地震动强度指标关系曲线

    Figure  4.  Relation between structural damage index and ground motion intensity index

    图  5  不同极限状态下地震易损性分析曲线

    Figure  5.  Seismic vulnerability analysis curve under different limit states

    表  1  20条强震记录

    Table  1.   20 records of strong earthquakes

    序号 PEER编号 地震名称 地震台 PGA/g PGV/ (cm·s−1) 选用分量
    D1 0068 San Fernando LA - Hollywood Stor FF 0.21 19.0 SFERN/PEL090.at2
    D2 0126 Gazli, USSR Karakyr 0.71 71.2 GAZLI/GAZ000.at2
    D3 0160 Imperial Valley-06 Bonds Corner 0.76 44.3 IMPVALL/H-BCR140.at2
    D4 0169 Imperial Valley-06 Delta 0.35 33.0 IMPVALL/H-DLT262.at2
    D5 0174 Imperial Valley-06 El Centro Array #11 0.38 42.0 IMPVALL/H-E11140.at2
    D6 0181 Imperial Valley-06 El Centro Array #6 0.44 111.9 IMPVALL/H-E06140.at2
    D7 0721 Superstition Hills-02 El Centro Imp. Co. Cent 0.36 46.0 SUPERST/B-ICC000.at2
    D8 0821 Erzican, Turkey Erzincan 0.49 95.5 ERZIKAN/ERZ-NS.at2
    D9 0828 Cape Mendocino Petrolia 0.63 82.1 CAPEMEND/PET000.at2
    D10 0900 Landers Yermo Fire Station 0.24 52.0 LANDERS/YER270.at2
    D11 0953 Northridge-01 Beverly Hills-14145Mulhol 0.52 63.0 NORTHR/MUL009.at2
    D12 0960 Northridge-01 Canyon Country-W Lost Cany 0.48 45.0 NORTHR/LOS000.at2
    D13 1063 Northridge-01 Rinaldi Receiving Sta 0.87 167.3 NORTHR/RRS228.at2
    D14 1116 Kobe, Japan Shin-Osaka 0.24 38.0 KOBE/SHI000.at2
    D15 1158 Kocaeli, Turkey Duzce 0.36 59.0 KOCAELI/DZC180.at2
    D16 1165 Kocaeli, Turkey Izmit 0.22 29.8 KOCAELI/IZT180.at2
    D17 1176 Kocaeli, Turkey Yarimca 0.31 73.0 KOCAELI/YPT060.at2
    D18 1485 Chi-Chi, Taiwan TCU045 0.51 39.0 CHICHI/TCU045-E.at2
    D19 1504 Chi-Chi, Taiwan TCU067 0.56 91.8 CHICHI/TCU067-E.at2
    D20 1787 Hector Mine Hector 0.34 42.0 HECTOR/HEC000.at2
    下载: 导出CSV

    表  2  不同性能状态下的钢筋混凝土框架结构最大层间位移角限值

    Table  2.   The limit states of maximum inter-story drift ratio under different performance

    结构性能状态性能状态描述最大层间位移角限值/%
    立即使用状态 ( IO )结构完好1
    生命安全状态 ( LS )结构遭受一定的破坏2
    防止倒塌状态 ( CP )结构遭受严重破坏4
    下载: 导出CSV

    表  3  极限状态定义及层间位移角限值

    Table  3.   Definition of limit state and limit value of inter-story drift ratio

    序号 来源 极限状态及层间位移角限值
    1 周颖等(2010 轻微破坏
    1/250
    中等破坏
    1/100
    严重破坏
    1/30
    2 吕西林等(2012 正常使用
    1/510
    基本可使用
    1/255
    修复后使用
    1/152
    生命安全
    1/100
    接近倒塌
    1/33
    3 韩建平等(2018 基本完好
    1/550
    轻微破坏
    1/250
    中等破坏
    1/120
    不严重破坏
    1/60
    倒塌
    1/20
    4 张令心等(2018 基本完好
    1/700
    轻微破坏
    1/350
    中等破坏
    1/175
    严重破坏
    1/90
    倒塌
    1/90
    5 任浩等(2019 基本完好
    1/550
    轻微破坏
    1/250
    中等破坏
    1/100
    严重破坏
    1/50
    倒塌
    1/50
    注:为了便于计算结果的对比分析,对于吕西林等(2012)划分的5个极限状态,按顺序依次等同于“基本完好”“轻微破坏”“中等破坏”“严重破坏”和“倒塌”;韩建平等(2018)定义的“不严重破坏”等同于“严重破坏”。
    下载: 导出CSV
  • 陈学伟,林哲,2020. 结构弹塑性分析程序OpenSEES原理与实例. 2版. 北京:中国建筑工业出版社.

    Chen X. W., Lin Z., 2020. Structural nonlinear analysis program OpenSEES theory and tutorial. 2nd ed. Beijing:China Architecture & Building Press. (in Chinese)
    程玲,2014. 基于Pushover方法的单自由度结构抗震易损性分析. 大连:大连理工大学.

    Cheng L., 2014. Fragility analysis of SDOF based on pushover method. Dalian:Dalian University of Technology. (in Chinese)
    韩建平,黄林杰,孙小云,2016. 考虑填充墙平面内外相互作用评估RC框架-填充墙结构抗整体性倒塌能力. 工程力学,33(9):146−154. doi: 10.6052/j.issn.1000-4750.2015.02.0098

    Han J. P., Huang L. J., Sun X. Y., 2016. Global collapse resistance capacity investigation of infilled RC frame considering in-plane and out-of-plane interaction of infill walls. Engineering Mechanics, 33(9): 146−154. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.02.0098
    韩建平,魏世龙,张鑫,2018. 基于谱匹配的近远场地震动作用下RC框架结构易损性分析. 工程科学与技术,50(3):149−157.

    Han J. P., Wei S. L., Zhang X., 2018. Seismic fragility analysis of RC frames under Near-Field and Far-field ground motion based on spectral matching. Advanced Engineering Sciences, 50(3): 149−157. (in Chinese)
    梁兴文,叶艳霞,2015. 混凝土结构非线性分析. 2版. 北京:中国建筑工业出版社.
    吕大刚,王光远,2001. 基于损伤性能的抗震结构最优设防水准的决策方法. 土木工程学报,34(1):44−49. doi: 10.3321/j.issn:1000-131X.2001.01.009

    Lü D. G., Wang G. Y., 2001. Decision-making method of optimal fortification level for aseismic structures based on damage performance. China Civil Engineering Journal, 34(1): 44−49. (in Chinese) doi: 10.3321/j.issn:1000-131X.2001.01.009
    吕西林,2009. 超限高层建筑工程抗震设计指南. 2版. 上海:同济大学出版社.

    Lü X. L., 2009. Seismic design guidelines for tall buildings beyond the scope of design codes. 2nd ed. Shanghai:Tongji University Press. (in Chinese)
    吕西林,苏宁粉,周颖,2012. 复杂高层结构基于增量动力分析法的地震易损性分析. 地震工程与工程振动,32(5):19−25.

    Lü X. L., Su N. F., Zhou Y., 2012. IDA-based seismic fragility analysis of a complex high-rise structure. Journal of Earthquake Engineering and Engineering Vibration, 32(5): 19−25. (in Chinese)
    门进杰,张谦,徐超等,2020. 基于改进Park-Ang双参数模型的RCS混合框架结构地震损伤评估. 工程力学,37(9):133−143. doi: 10.6052/j.issn.1000-4750.2019.10.0604

    Men J. J., Zhang Q., Xu C., et al., 2020. Seismic damage assessment of composite frame with reinforced concrete columns and steel beams based on improved Park-Ang double parameter model. Engineering Mechanics, 37(9): 133−143. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0604
    牛荻涛,任利杰,1996. 改进的钢筋混凝土结构双参数地震破坏模型. 地震工程与工程振动,16(4):44−54.

    Niu D. T., Ren L. J., 1996. A modified seismic damage model with double variables for reinforced concrete structures. Earthquake Engineering and Engineering Vibration, 16(4): 44−54. (in Chinese)
    任浩,田勤虎,张炜超等,2019. 基于IDA方法的钢筋混凝土框架结构地震易损性分析. 建筑结构,49(S2):350−355.

    Ren H., Tian Q. H., Zhang W. C., et al., 2019. Seismic fragility analysis of reinforced concrete frame structures based on IDA method. Building Structure, 49(S2): 350−355. (in Chinese)
    施炜,叶列平,陆新征,2014. 单自由度结构体系抗地震倒塌能力研究. 建筑结构学报,35(9):82−89.

    Shi W., Ye L. P., Lu X. Z., 2014. Study on seismic collapse capacity of single-degree-of-freedom structural system. Journal of Building Structures, 35(9): 82−89. (in Chinese)
    宋文斌,2020. RC框架地震易损性及抗倒塌能力研究. 西安:长安大学.

    Song W. B., 2020. Research on seismic vulnerability and collapse resistance of RC frame. Xi’an:Chang’an University. (in Chinese)
    徐龙河,肖水晶,卢啸等,2017. 钢筋混凝土剪力墙基于变形和滞回耗能非线性组合的损伤演化分析. 工程力学,34(8):117−124.

    Xu L. H., Xiao S. J., Lu X., et al., 2017. Damage evolution analysis of RC shear wall based on nonlinear combination of deformation and hysteretic energy. Engineering Mechanics, 34(8): 117−124. (in Chinese)
    叶列平,马千里,缪志伟,2009. 结构抗震分析用地震动强度指标的研究. 地震工程与工程振动,29(4):9−22.

    Ye L. P., Ma Q. L., Miao Z. W., 2009. Study on earthquake intensities for seismic analysis of structures. Journal of Earthquake Engineering and Engineering Vibration, 29(4): 9−22. (in Chinese)
    俞言祥,胡聿贤,潘华,2005. 地震震源机制对长周期地震动的影响研究. 岩石力学与工程学报,24(17):3113−3118.

    Yu Y. X., Hu Y. X., Pan H., 2005. Study on impact of focal mechanism on long-period ground motions. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3113−3118. (in Chinese)
    张令心,李孟达,刘洁平等,2018. 考虑结构不确定性的框剪结构地震易损性分析. 自然灾害学报,27(4):112−118.

    Zhang L. X., Li M. D., Liu J. P., et al., 2018. Seismic fragility analysis of frame-shear wall structures considering structural parameter uncertainty. Journal of Natural Disasters, 27(4): 112−118. (in Chinese)
    赵凤新,任志林,张郁山,2008. 基于不同破坏指数的建筑物震害预测不确定性分析. 中国地震,24(4):325−336. doi: 10.3969/j.issn.1001-4683.2008.04.002

    Zhao F. X., Ren Z. L., Zhang Y. S., 2008. Study on uncertainty of earthquake damage prediction based on RC structural damage indices. Earthquake Research in China, 24(4): 325−336. (in Chinese) doi: 10.3969/j.issn.1001-4683.2008.04.002
    周颖,吕西林,卜一,2010. 增量动力分析法在高层混合结构性能评估中的应用. 同济大学学报(自然科学版),38(2):183−187,193.

    Zhou Y., Lü X. L., Bo Y., 2010. Application of incremental dynamic analysis to seismic evaluation of hybrid structure. Journal of Tongji University (Natural Science), 38(2): 183−187,193. (in Chinese)
    Kunnath S. K., Reinhorn A. M., Park Y. J., 1990. Analytical modeling of inelastic seismic response of R/C structures. Journal of Structural Engineering, 116(4): 996−1017. doi: 10.1061/(ASCE)0733-9445(1990)116:4(996)
    Luco N., Cornell C. A., 2000. Effects of connection fractures on SMRF seismic drift demands. Journal of Structural Engineering, 126(1): 127−136. doi: 10.1061/(ASCE)0733-9445(2000)126:1(127)
    Park Y. J., Ang A. H. S., 1985. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, 111(4): 722−739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
    TBI Guidelines Working Group, 2010. Guidelines for performance-based seismic design of tall buildings. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回