• ISSN 1673-5722
  • CN 11-5429/P

考虑近场、中远场区域性差异的地震动工程输入适用性研究

吴玉娇 任叶飞 肖裴渊 刘也 冀昆 温瑞智

吴玉娇,任叶飞,肖裴渊,刘也,冀昆,温瑞智,2024. 考虑近场、中远场区域性差异的地震动工程输入适用性研究. 震灾防御技术,19(4):685−697. doi:10.11899/zzfy20240405. doi: 10.11899/zzfy20240405
引用本文: 吴玉娇,任叶飞,肖裴渊,刘也,冀昆,温瑞智,2024. 考虑近场、中远场区域性差异的地震动工程输入适用性研究. 震灾防御技术,19(4):685−697. doi:10.11899/zzfy20240405. doi: 10.11899/zzfy20240405
Wu Yujiao, Ren Yefei, Xiao Peiyuan, Liu Ye, Ji Kun, Wen Ruizhi. Regional Differences in Global Ground Motion and Their Applicability to Engineering Inputs[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 685-697. doi: 10.11899/zzfy20240405
Citation: Wu Yujiao, Ren Yefei, Xiao Peiyuan, Liu Ye, Ji Kun, Wen Ruizhi. Regional Differences in Global Ground Motion and Their Applicability to Engineering Inputs[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 685-697. doi: 10.11899/zzfy20240405

考虑近场、中远场区域性差异的地震动工程输入适用性研究

doi: 10.11899/zzfy20240405
基金项目: 国家重点研发计划项目(2019YFE0115700);国家自然科学基金(U2239252、51778589);黑龙江省自然科学基金杰出青年项目(JQ2023E002);宁夏回族自治区重点研发计划项目(2022BEG03062)
详细信息
    作者简介:

    吴玉娇,女,生于1998年。硕士研究生。主要从事地震动输入选取方面的研究工作。E-mail:wyj_01@foxmail.com

    通讯作者:

    任叶飞,男,生于1983年。研究员。主要从事工程地震方面的研究工作。E-mail:renyefei@iem.net.cn

Regional Differences in Global Ground Motion and Their Applicability to Engineering Inputs

  • 摘要: 工程结构动力时程分析时在本地区观测记录不足的情况下,时常选用其他国家或地区的强震动记录作为地震动输入,但这些记录是否适用于我国规范要求的场景尚缺乏科学的验证。本文搜集了美国、欧洲、新西兰、日本以及墨西哥地区近十年浅层壳内地震共1697组强震动观测记录,分析相同场地类别条件下这些记录的归一化反应谱与我国规范设计谱的匹配效果,从全周期、分周期段谱形匹配的角度,验证这些国家和地区的地震动记录作为我国工程结构时程分析地震动输入的适用性,得到如下结论:(1)通过比较不同国家间地震动的归一化反应谱,验证了地震动存在显著的区域性差异,说明地震动输入选取时要尽可能选用工程场址所在地区的观测记录。(2)通过对比近、中、远场的归一化平均谱,发现短周期地震动的区域性差异在近场并不突出,地震动输入选取还需考虑距离因素。(3)依据谱形匹配的平均相对误差、平均变异系数和观测记录数量,给出了国外强震动记录是否适用于我国地震动输入选取的评价流程。(4)分别从全周期以及短、中、长分周期段谱形匹配效果的角度,给出了不同场地类别下我国地震动输入选取时最优推荐强震动记录的国家或地区,发现在短周期段新西兰的记录最适用,而中、长周期段和全周期段则是日本地区的记录最为适用。研究结果可为我国工程结构时程分析的地震动输入选取工作提供参考。
  • 图  1  本研究收集的56个浅层壳内地震事件震中分布

    Figure  1.  Distribution of epicenters of the 56 shallow crustal earthquakes collected in this study

    图  2  强震动记录的PGA与$ {{R}}_{\text{h}\text{yp}} $分布情况

    Figure  2.  PGA vs. $ {{R}}_{\text{hyp}} $ for global strong motion records collected in this study

    图  3  本研究强震动台站场地类别情况

    Figure  3.  Site categories of strong motion stations in this study

    图  4  日本和新西兰III类场地记录的归一化反应谱对比

    Figure  4.  Comparison of the normalized response spectra at class III sites from Japan and New Zealand

    图  5  日本和新西兰III类场地记录匹配的误差情况

    Figure  5.  Errors in the matching of response spectra of class III sites in Japan and New Zealand

    图  6  日本和新西兰III类场地近场地区记录匹配情况

    Figure  6.  The matching of near-field records at class III sites in Japan and New Zealand

    图  7  日本和新西兰III类场地中场地区记录的匹配情况

    Figure  7.  The matching of mid-field records at class III sites in Japan and New Zealand

    图  8  日本和新西兰III类场地远场地区记录的匹配情况

    Figure  8.  The matching of far-field records at class III sites in Japan and New Zealand

    图  9  日本和新西兰III类场地近、中、远场地区归一化平均谱的差值情况

    Figure  9.  Differences of the normalized mean spectra for the near, middle and far-field records at class III sites between Japan and New Zealand

    图  10  不同地区归一化反应谱与规范设计谱全周期段(0~6.0 s)匹配误差情况

    Figure  10.  Errors in matching the normalized response spectra of different regions to the canonical design spectra in the full period (0~6.0 s)

    图  11  不同地区归一化反应谱与规范设计谱在分周期段匹配时的误差情况

    Figure  11.  Errors in matching normalized response spectra to the design spectra in the code for different regions in the partial period range

    表  1  备选记录按场地类别各地区分组情况

    Table  1.   Numbers of the strong motion records in different countries grouped with different site classes

    地区场地类别
    I0I1IIIIIIV
    美国694440500
    欧洲82158214588
    新西兰80502421788
    日本18164106023862
    墨西哥003020
    下载: 导出CSV

    表  2  最优推荐强震动记录的国家或地区

    Table  2.   Recommended countries or regions of strong motion records

    周期段场地类别
    I0I1IIIIIIV
    全周期(0~6 s)日本/欧洲日本日本美国/日本日本
    分周期(0~0.5 s)日本新西兰新西兰新西兰欧洲
    分周期(0.5~1.5 s)日本日本日本美国新西兰
    分周期(1.5~5.5 s)欧洲/日本日本欧洲美国/日本日本
    下载: 导出CSV
  • 胡进军,李琼林,吕景浩等,2018. 基于CMS的核电厂安全壳设计地震动确定方法. 振动与冲击,37(24):38−45,60.

    Hu J. J., Li Q. L., Lü J. H., et al., 2018. A study on the input ground motion of the containment vessel of nuclear power plants based on conditional mean spectrum. Journal of Vibration and Shock, 37(24): 38−45,60. (in Chinese)
    冀昆,温瑞智,任叶飞,2017. 适用于我国抗震设计规范的天然强震记录选取. 建筑结构学报,38(12):57−67.

    Ji K., Wen R. Z., Ren Y. F., 2017. Ground motion recordings selection for seismic design code. Journal of Building Structures, 38(12): 57−67. (in Chinese)
    冀昆,温瑞智,任叶飞等,2020. 我国抗震规范时程分析中地震动的输入数量. 西南交通大学学报,55(4):743−751. doi: 10.3969/j.issn.0258-2724.20180604

    Ji K., Wen R. Z., Ren Y. F., et al., 2020. Number of earthquake ground motion inputs for time-history analysis of seismic design code in China. Journal of Southwest Jiaotong University, 55(4): 743−751. (in Chinese) doi: 10.3969/j.issn.0258-2724.20180604
    刘周强,徐艳,2021. 城市立交桥的近断层地震动输入模拟. 振动与冲击,40(8):286−294.

    Liu Z. Q., Xu Y., 2021. Near-fault ground motion input simulation of urban overpass. Journal of Vibration and Shock, 40(8): 286−294. (in Chinese)
    吕红山,赵凤新,2007. 适用于中国场地分类的地震动反应谱放大系数. 地震学报,29(1):67−76. doi: 10.3321/j.issn:0253-3782.2007.01.008

    Lü H. S., Zhao F. X., 2007. Site coefficients suitable to China site category. Acta Seismologica Sinica, 29(1): 67−76. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.01.008
    任叶飞,温瑞智,王宏伟等,2014. 芦山地震中强地面运动的区域性特征探讨. 地震工程与工程振动,34(S1):188−192.

    Ren Y. F., Wen R. Z., Wang H. W., et al., 2014. Regional dependence of ground motion in 2013 Lushan earthquake sequence. Earthquake Engineering and Engineering Dynamics, 34(S1): 188−192. (in Chinese)
    任叶飞,尹建华,温瑞智等,2020. 结构抗倒塌易损性分析中地震动输入不确定性影响研究. 工程力学,37(1):115−125.

    Ren Y. F., Yin J. H., Wen R. Z., et al., 2020. The impact of ground motion inputs on the uncertainty of structural collapse fragility. Engineering Mechanics, 37(1): 115−125. (in Chinese)
    温瑞智,2016. 我国强地震动记录特征综述. 地震学报,38(4):550−563.

    Wen R. Z., 2016. A review on the characteristics of Chinese strong ground motion recordings. Acta Seismologica Sinica, 38(4): 550−563. (in Chinese)
    谢礼立,翟长海,2003. 最不利设计地震动研究. 地震学报,25(3):250−261. doi: 10.3321/j.issn:0253-3782.2003.03.003

    Xie L. L., Zhai C. H., 2003. Study on the severest real ground motion for seismic design and analysis. Acta Seismologica Sinica, 25(3): 250−261. (in Chinese) doi: 10.3321/j.issn:0253-3782.2003.03.003
    姚鑫鑫,任叶飞,岸田忠大等,2022. 强震动记录的数据处理流程:去噪滤波. 工程力学,39(S1):320−329.

    Yao X. X., Ren Y. F., Kishida T., et al., 2022. The procedure of filtering the strong motion record: denoising and filtering. Engineering Mechanics, 39(S1): 320−329. (in Chinese)
    张国民,汪素云,李丽等,2002. 中国大陆地震震源深度及其构造含义. 科学通报, 47 (9):663−668.

    Zhang G. M. ,Wang S. Y. ,Li L. ,et al. ,2002. Focal depth research of earthquakes in Mainland China:Implication for tectonics. Chinese Science Bulletin, 47 (12):969−974. (in Chinese)
    张齐,胡进军,谢礼立等,2018. 地震动衰减关系区域性差异初步探讨. 地震工程与工程振动,38(4):150−157.

    Zhang Q., Hu J. J., Xie L. L., et al., 2018. Preliminary study on regional difference of ground motion attenuation relationship. Earthquake Engineering and Engineering Dynamics, 38(4): 150−157. (in Chinese)
    Ancheta T. D., Darragh R. B., Stewart J. P., et al., 2014. NGA-West2 database. Earthquake Spectra, 30(3): 989−1005. doi: 10.1193/070913EQS197M
    Baker J. W., 2011. Conditional mean spectrum: tool for ground-motion selection. Journal of Structural Engineering, 137(3): 322−331.
    Boore D. M., Thompson E. M., Cadet H., 2011. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 meters. Bulletin of the Seismological Society of America, 101(6): 3046−3059. doi: 10.1785/0120110071
    Chiou B., Darragh R., Gregor N., et al., 2008. NGA project strong-motion database. Earthquake Spectra, 24(1): 23−44.
    Hayes G. P., Moore G. L., Portner D. E., et al., 2018. Slab2, a comprehensive subduction zone geometry model. Science, 362(6410): 58−61. doi: 10.1126/science.aat4723
    Heath D. C., Wald D. J., Worden C. B., et al., 2020. A global hybrid V S30 map with a topographic slope-based default and regional map insets. Earthquake Spectra, 36(3): 1570−1584. doi: 10.1177/8755293020911137
    Xu P. B., Ren Y. F., Wen R. Z., et al., 2020. Observations on regional variability in ground-motion amplitude from six MW~ 6.0 earthquakes of the north–south seismic zone in China. Pure and Applied Geophysics, 177(1): 247−264. doi: 10.1007/s00024-019-02176-6
    Zhao J. X., Zhou S. L., Gao P. J., et al., 2015. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations. Bulletin of the Seismological Society of America, 105(5): 2750−2763. doi: 10.1785/0120150013
    Zhu C. B., Weatherill G., Cotton F., et al., 2021. An open-source site database of strong-motion stations in Japan: K-NET and KiK-net (v1.0. 0). Earthquake Spectra, 37(3): 2126−2149. doi: 10.1177/8755293020988028
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回