Study of Soil Structure Amplification Based on Strong Earthquake Records−A Case Study of SMASS Array
-
摘要: 震害现场调查和研究成果表明,场地土层结构对地震动有较大影响。为了研究场地内土层结构的放大效应,以河北省地震灾害防御与风险评价重点实验室的场地与结构观测台阵(Seismic Monitoring Array of Site and Structure,SMASS)所记录的古冶和滦州地震记录为基础,采用传统谱比法,将地下236 m测点处设为参考场地,把不同监测点处观测到的地震记录傅氏谱同参考场地进行处理及对比分析,得到以下结论:(1)SMASS台阵场地中浅部土层对地震动的放大效应更为明显。(2)SMASS台阵场地中土层结构对地震动的放大效应存在明显差异,在深部土层中,土层结构对水平向地震动的放大效应更为明显;在浅层土层中,土层结构对竖直向地震动的放大效应较为明显。(3)SMASS台阵场地中随着监测点所处深度不断上升,低频成分频带逐渐变宽,高频成分受到的影响较低频成分更为显著。Abstract: The results of this study demonstrate that the soil layer structure at a site significantly influences seismic motion. To investigate the amplification effect of the soil layer structure, seismic records from Guye and Luanzhou, recorded by the Seismic Monitoring Array of Site and Structure (SMASS) in Key Laboratory of Earthquake Disaster Prevention and Risk Assessment of Hebei Province, were analyzed. The traditional spectral ratio method was employed, using seismic data from an underground reference point at 236 meters. Seismic records from various monitoring points were compared to those from the reference site. The following conclusions were drawn: (1) The amplification effect of the shallow soil layer at the SMASS site is more pronounced; (2) The amplification effect of the soil layer structure on seismic motion varies significantly, with deeper soil layers exhibiting a stronger amplification effect on horizontal seismic motion, while shallow soil layers have a greater impact on vertical seismic motion; (3) As the depth of the monitoring point increases, the low-frequency components of the seismic signal broaden, and the high-frequency components are increasingly influenced by these low-frequency components.
-
表 1 场地影响台阵仪器布设表
Table 1. Layout of site impact station array instrumentation
测点编号 测点位置 所处土层 S01 地表0 m 杂填土 S02 地下30 m 淤泥质黏土 S03 地下65 m 粉土 S04 地下101 m 黏土 S05 地下151 m 粉砂 S06 地下236 m 砂岩 表 2 不同深度处PGA值
Table 2. Values of PGA at different depths
地震名称 埋深/m 竖向PGA/(cm·s−2) 南北向PGA/(cm·s−2) 东西向PGA/(cm·s−2) 古冶地震 236 0.14 −0.20 0.32 151 −0.13 0.40 −0.20 101 −0.15 −0.30 0.34 65 −0.12 −0.22 −0.48 30 0.18 −1.57 −2.06 0 4.17 −9.29 6.56 滦州地震 236 −0.02 0.04 −0.06 151 −0.03 0.07 −0.05 101 −0.02 0.06 0.08 65 −0.03 −0.06 −0.07 30 0.05 −0.30 −0.39 0 −0.63 1.53 1.31 表 3 古冶地震不同测点处最大放大效应及相应卓越频率
Table 3. Maximum amplification effect at different measurement points and the corresponding frequency of excellence of the Guye earthquake
测点编号 0.2~1 Hz 1~10 Hz 10~25 Hz 水平向地震动 竖直向地震动 水平向地震动 竖直向地震动 水平向地震动 竖直向地震动 AF f/Hz AF f/Hz AF f/Hz AF f/Hz AF f/Hz AF f/Hz S05 1.97 0.44 1.54 0.99 2.91 1.30 4.03 2.15 1.79 16.41 2.64 18.45 S04 2.75 0.46 1.95 0.99 2.92 3.08 3.82 2.13 1.83 16.43 2.66 18.45 S03 3.34 0.49 2.14 0.99 4.12 2.29 3.27 1.89 1.98 10.99 2.55 15.14 S02 22.99 0.51 2.22 0.99 23.76 3.95 4.16 2.14 13.48 11.91 2.82 10.78 S01 33.11 0.51 17.76 0.99 80.30 3.91 93.67 8.8 83.86 18.52 112.57 14.38 注:AF表示最大放大效应,f表示与AF对应的频率。 表 4 滦州地震不同测点处最大放大效应及相应卓越频率
Table 4. Maximum amplification effect at different measurement points and the corresponding frequency of excellence of the Luanzhou earthquake
测点编号 0.2~1 Hz 1~10 Hz 水平向地震动 竖直向地震动 水平向地震动 竖直向地震动 AF f/Hz AF f/Hz AF f/Hz AF f/Hz S05 2.34 0.48 1.47 0.99 3.64 1.31 3.20 2.29 S04 3.41 0.50 1.74 0.99 3.07 1.34 2.73 2.29 S03 4.14 0.51 1.96 0.74 3.71 2.32 3.75 2.13 S02 27.26 0.53 2.45 0.74 24.29 1.31 6.45 2.31 S01 41.57 0.52 22.89 0.73 66.09 3.22 80.26 8.49 注:AF表示最大放大效应,f表示与AF对应的频率。 表 5 不同埋深处土层地震放大系数及相应卓越频率
Table 5. Amplification coefficients and corresponding excellence frequencies for amplification at different depths of burial
埋深/m 古冶地震 滦州地震 水平向地震动 竖直向地震动 水平向地震动 竖直向地震动 谱比值 卓越频率/Hz 谱比值 卓越频率/Hz 谱比值 卓越频率/Hz 谱比值 卓越频率/Hz 151 2.91 1.30 4.03 2.15 3.65 1.31 3.20 2.29 101 2.92 3.08 3.82 2.14 3.07 1.34 2.73 2.29 65 4.12 2.29 3.27 1.89 3.71 2.32 3.75 2.13 30 23.76 3.95 4.16 2.14 24.29 1.31 6.45 2.31 0 83.86 18.53 112.57 14.38 66.09 3.22 80.26 8.49 -
薄景山,李秀领,刘红帅,2003. 土层结构对地表加速度峰值的影响. 地震工程与工程振动,23(3):35−40. doi: 10.3969/j.issn.1000-1301.2003.03.006Bo J. S., Li X. L., Liu H. S., 2003. Effects of soil layer construction on peak accelerations of ground motions. Earthquake Engineering and Engineering Vibration, 23(3): 35−40. (in Chinese) doi: 10.3969/j.issn.1000-1301.2003.03.006 薄景山,李琪,齐文浩等,2021. 场地条件对地震动和震害影响的研究进展与建议. 吉林大学学报(地球科学版),51(5):1295−1305.Bo J. S., Li Q., Qi W. H., et al., 2021. Research progress and discussion of site condition effect on ground motion and earthquake damages. Journal of Jilin University (Earth Science Edition), 51(5): 1295−1305. (in Chinese) 崔昊,丁海平,2016. 基于KiK-net强震记录的场地调整系数估计. 地震工程与工程振动,36(4):147−152.Cui H., Ding H. P., 2016. Estimation of site coefficient based on KiK-net strong-motion seismograph network. Earthquake Engineering and Engineering Dynamics, 36(4): 147−152. (in Chinese) 大崎顺彦,2008. 地震动的谱分析入门. 田琪,译. 2版. 北京:地震出版社. 兰景岩,宋锡俊,刘娟等,2020. 地震作用下中硬自由场放大效应随深度的变化规律研究. 岩石力学与工程学报,39(S2):3696−3705.Lan J. Y., Song X. J., Liu J., et al., 2020. Study on the variation ground motion amplification effect of medium-hard free fields with depth under earthquake action. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3696−3705. (in Chinese) 李平,薄景山,齐文浩等,2012. 土层结构对汉源烈度异常的影响. 地震学报,34(6):851−857. doi: 10.3969/j.issn.0253-3782.2012.06.011Li P., Bo J. S., Qi W. H., et al., 2012. Effects of soil structure on abnormal intensity in Hanyuan old town. Acta Seismologica Sinica, 34(6): 851−857. (in Chinese) doi: 10.3969/j.issn.0253-3782.2012.06.011 李平,薄景山,李孝波等,2016. 安宁河河谷及邛海地区土层场地对地震动的放大作用. 岩土工程学报,38(2):362−369. doi: 10.11779/CJGE201602022Li P., Bo J. S., Li X. B., et al., 2016. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area. Chinese Journal of Geotechnical Engineering, 38(2): 362−369. (in Chinese) doi: 10.11779/CJGE201602022 卢滔,2003. 响嘡台阵场地特征及其反应的分析. 哈尔滨:中国地震局工程力学研究所. 吕悦军,彭艳菊,兰景岩等,2008. 场地条件对地震动参数影响的关键问题. 震灾防御技术,3(2):126−135. doi: 10.3969/j.issn.1673-5722.2008.02.003Lü Y. J., Peng Y. J., Lan J. Y., et al., 2008. Some key problems about site effects on seismic ground motion parameters. Technology for Earthquake Disaster Prevention, 3(2): 126−135. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.02.003 钮泽蓁,1991. 1985年墨西哥地震高层建筑的地震表现. 建筑结构,21(1):58−62,34. 钱胜国,1994. 软土夹层地基场地土层地震反应特性的研究. 工程抗震,(1):32−36. 王海云,2011. 渭河盆地中土层场地对地震动的放大作用. 地球物理学报,54(1):137−150. doi: 10.3969/j.issn.0001-5733.2011.01.015Wang H. Y., 2011. Amplification effects of soil sites on ground motion in the Weihe basin. Chinese Journal of Geophysics, 54(1): 137−150. (in Chinese) doi: 10.3969/j.issn.0001-5733.2011.01.015 王海云,2014. 土层场地的放大作用随深度的变化规律研究−−以金银岛岩土台阵为例. 地球物理学报,57(5):1498− 1509. doi: 10.6038/cjg20140514Wang H. Y., 2014. Study on variation of soil site amplification with depth: a case at Treasure Island geotechnical array, San Francisco Bay. Chinese Journal of Geophysics, 57(5): 1498−1509. (in Chinese) doi: 10.6038/cjg20140514 袁一凡,田启文,2012. 工程地震学. 北京:地震出版社. 周宝峰,2012. 强震观测中的关键技术研究. 哈尔滨:中国地震局工程力学研究所.Zhou B. F. ,2012. Some key issues on the strong motion observation. Harbin:Institute of Engineering Mechanics,China Earthquake Administration. (in Chinese) Borcherdt R. D., 1970. Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1): 29−61. Trifunac M. D., Todorovska M. I., 2001. A note on the useable dynamic range of accelerographs recording translation. Soil Dynamics and Earthquake Engineering, 21(4): 275−286. doi: 10.1016/S0267-7261(01)00014-8 Wood H O. 1908 Distribution of Apparent Intensity in San Francisco [A][J]. Lawson A C. The California Washington: Yu J. S., Haines J., 2003. The choice of reference sites for seismic ground amplification analyses: case study at parkway, New Zealand. Bulletin of the Seismological Society of America, 93(2): 713−723. doi: 10.1785/0120010289 -