• ISSN 1673-5722
  • CN 11-5429/P

不同方法求解3级地震震源机制解准确性分析

杜航 王俊 江昊琳 钱婷 倪昊琦 李子烨

杜航,王俊,江昊琳,钱婷,倪昊琦,李子烨,2024. 不同方法求解3级地震震源机制解准确性分析. 震灾防御技术,19(4):651−660. doi:10.11899/zzfy20240402. doi: 10.11899/zzfy20240402
引用本文: 杜航,王俊,江昊琳,钱婷,倪昊琦,李子烨,2024. 不同方法求解3级地震震源机制解准确性分析. 震灾防御技术,19(4):651−660. doi:10.11899/zzfy20240402. doi: 10.11899/zzfy20240402
Du Hang, Wang Jun, Jiang Haolin, Qian Ting, Ni Haoqi, Li Ziye. Analysis of the Accuracy of Focal Mechanism Solutions for M3.0 Earthquakes with Different Methods[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 651-660. doi: 10.11899/zzfy20240402
Citation: Du Hang, Wang Jun, Jiang Haolin, Qian Ting, Ni Haoqi, Li Ziye. Analysis of the Accuracy of Focal Mechanism Solutions for M3.0 Earthquakes with Different Methods[J]. Technology for Earthquake Disaster Prevention, 2024, 19(4): 651-660. doi: 10.11899/zzfy20240402

不同方法求解3级地震震源机制解准确性分析

doi: 10.11899/zzfy20240402
基金项目: 中国地震局监测、预报、科研三结合课题(3JH-202401014);江苏省地震局青年科学基金(202403);江苏省重点研发计划(BE2023082);地震科技星火项目(XH23015A)
详细信息
    作者简介:

    杜航,男,生于1991年。工程师,硕士。主要从事地震监测及震后产出方面的研究工作。E-mail:duh@mail.ustc.edu.cn

Analysis of the Accuracy of Focal Mechanism Solutions for M3.0 Earthquakes with Different Methods

  • 摘要: 本文采用TDMT_INV、FOCMEC和CAP 3种方法对网缘、网外和网内地震震源机制解进行计算,并对3种方法所得结果进行对比分析。研究发现,TDMT_INV方法的结果稳定性高度依赖于震相准确性,但只需5个台站参与定位即可获得相对准确的震源机制解。对于网外地震,3种方法都无法反演稳定的震源机制解;对于网缘地震,CAP方法受台站分布的影响较大,使用时需谨慎。若波形质量好、信噪比高,可使用FOCMEC方法进行计算,若无清晰的P波初动可使用TDMT_INV方法进行计算;对于网内地震3种方法所得结果较为一致,但TDMT_INV方法可快速获得震源机制解。
  • 图  1  地震震中及台站分布图

    Figure  1.  The distribution of the epicenter and location of seismic stations

    图  2  TDMT_INV方法反演东台M3.0地震震源机制解

    Figure  2.  Focal mechanism solution of the Dongtai M3.0 earthquake with the TDMT_INV method

    图  3  CAP方法反演东台M3.0地震震源机制解

    Figure  3.  Focal mechanism solution of the Dongtai M3.0 earthquake with the CAP method

    图  4  FOCMEC方法反演东台M3.0地震震源机制解

    Figure  4.  Focal mechanism solution of the Dongtai M3.0 earthquake with the FOCMEC method

    图  5  TDMT_INV方法反演微山M3.2地震震源机制解

    Figure  5.  Focal mechanism solution of the Weishan M3.2 earthquake with the TDMT_INV method

    图  6  CAP方法反演微山M3.2地震震源机制解

    Figure  6.  Focal mechanism solution of the Weishan M3.2 earthquake with the CAP method

    图  7  FOCMEC方法反演微山M3.2地震震源机制解

    Figure  7.  Focal mechanism solution of the Weishan M3.2 earthquake with the FOCMEC method

    图  8  TDMT_INV方法反演江都M3.1地震震源机制解

    Figure  8.  Focal mechanism solution of the Jiangdu M3.1 earthquake with the TDMT_INV method

    图  9  CAP方法反演江都M3.1地震震源机制解

    Figure  9.  Focal mechanism solution of the Jiangdu M3.1 earthquake with the CAP method

    图  10  FOCMEC方法反演江都M3.1地震震源机制解

    Figure  10.  Focal mechanism solution of the Jiangdu M3.1 earthquake with the FOCMEC method

    图  11  东台M3.0地震中心震源机制解

    Figure  11.  Central focal mechanism of the Dongtai M3.0 earthquake

    图  12  江都M3.1地震中心震源机制解

    Figure  12.  Central focal mechanism of the Jiangdu M3.1 earthquake

    表  1  东台M3.0地震震源机制解

    Table  1.   The focal mechanism solution results of the Dongtai M3.0 earthquake

    方法走向/°倾角/°滑动角/°
    TDMT_INV方法(2个人工标注台站波形震相)15887177
    TDMT_INV方法(5个人工标注台站波形震相)6866−39
    TDMT_INV方法(所有人工标注台站波形震相)7463−27
    CAP方法10338−12
    FOCMEC方法8161−29
    下载: 导出CSV

    表  2  微山M3.2地震震源机制解

    Table  2.   The focal mechanism solution results of the Weishan M3.2 earthquake

    方法走向/°倾角/°滑动角/°
    TDMT_INV方法(2个人工标注台站波形震相)26377−162
    TDMT_INV方法(5个人工标注台站波形震相)26589−161
    TDMT_INV方法(所有人工标注台站波形震相)26688−166
    CAP方法28262−13
    FOCMEC方法29366−21
    下载: 导出CSV

    表  3  江都M3.1地震震源机制解

    Table  3.   The focal mechanism solution results of the Jiangdu M3.1 earthquake

    方法走向/°倾角/°滑动角/°
    TDMT_INV方法(2个人工标注台站波形震相)21489−3
    TDMT_INV方法(5个人工标注台站波形震相)21578−7
    TDMT_INV方法(所有人工标注台站波形震相)21479−8
    CAP方法21172−8
    FOCMEC方法21080−9
    下载: 导出CSV

    表  4  东台M3.0地震震源机制解及中心震源机制解

    Table  4.   The focal mechanism solution results and central focal mechanism of the Dongtai M3.0 earthquake

    序号方法震源机制解走向/°、
    倾角/°、滑动角/°
    作为初始解得到的中心震源机制
    走向/°、倾角/°、滑动角/°
    作为初始解得到
    标准差S
    中心震源机制与其他震源机制的
    最小空间旋转角/°
    1TDMT_INV方法
    (5个人工标注台站波形震相)
    68、66、−3979.50、56.27、−28.9215.41197814.72
    2TDMT_INV方法
    (所有人工标注台站波形震相)
    74、63、−2779.53、56.24、−28.9315.4119809.52
    3CAP方法103、38、−1279.55、56.26、−28.9115.41193924.86
    FOCMEC方法81、61、−2979.55、56.26、−28.9115.4119384.97
    下载: 导出CSV

    表  5  江都M3.1地震震源机制解及中心震源机制解

    Table  5.   The focal mechanism solution results and central focal mechanism of the Jiangdu M3.1 earthquake

    序号 机构 震源机制解节面
    Ⅰ走向/°、倾角/°、滑动角/°
    作为初始解得到的中心震源
    机制节面Ⅰ走向/°、
    倾角/°、滑动角/°
    作为初始解得到
    标准差S
    中心震源机制与其他震源
    机制的最小空间旋转角/°
    1 TDMT_INV方法
    (5个人工标注台站波形震相)
    215、78、−7 212.47、 77.22、−7.99 3.731334 2.63
    2 TDMT_INV方法
    (所有人工标注台站波形震相)
    214、79、−8 212.46、 77.23、 −8.00 3.731370 2.35
    3 CAP方法 211、72、−8 212.47、 77.20、 −8.03 3.731732 5.42
    FOCMEC方法 210、80、−9 212.45、77.22、 −8.02 3.731664 3.73
    下载: 导出CSV
  • 杜航,郑江蓉,江昊琳等,2022. 利用FOCMEC和CAP方法反演2021年大丰海域 M 5.0及天宁 M 4.2地震震源机制解. 防灾减灾工程学报,42(4):874−880.

    Du H., Zheng J. R., Jiang H. L., et al., 2022. Inversion for the focal mechanisms of the 2021 Dafeng Sea M 5.0 earthquake and Tianning M 4.2 earthquake using FOCMEC and CAP methods. Journal of Disaster Prevention and Mitigation Engineering, 42(4): 874−880. (in Chinese)
    关鹏虎,李斌,李自红等,2022. 多方法求解中小地震震源机制解的可靠性分析−−以山西地震带3次中小地震为例. 太原理工大学学报,53(2):289−298.

    Guan P. H., Li B., Li Z. H., et al., 2022. Reliability of focal mechanism solutions for small and medium earthquakes based on different methods−taking three events in Shanxi seismic belt as examples. Journal of Taiyuan University of Technology, 53(2): 289−298. (in Chinese)
    刘泽民,黄显良,倪红玉等,2015a. 2014年4月20日霍山 M S4.3地震发震构造研究. 地震学报,37(3):402−410.

    Liu Z. M., Huang X. L., Ni H. Y., et al., 2015a. Seismogenic structure of the 20 April 2014 Huoshan M S4.3 earthquake in Auhui region. Acta Seismologica Sinica, 37(3): 402−410. (in Chinese)
    刘泽民,倪红玉,张炳等,2015b. 基于FOCMEC方法反演震源机制解的交互式程序研制与使用. 华北地震科学,33(1):19−24.

    Liu Z. M., Ni H. Y., Zhang B., et al., 2015b. The development and manual of interactive program inversing Focal mechanism with interactive FOCMEC method. North China Earthquake Sciences, 33(1): 19−24. (in Chinese)
    孙业君,黄耘,刘泽民等,2021. 郯庐断裂带鲁苏皖段及邻区构造应力场特征及其动力学意义. 地震地质,43(5):1188−1207.

    Sun Y. J., Huang Y., Liu Z. M., et al., 2021. Characteristics of tectonic stress field and dynamic significance in the Shandong-Jiangsu-Anhui segment of Tancheng-Lujiang fault zone and its adjacent areas. Seismology and Geology, 43(5): 1188−1207. (in Chinese)
    孙业君,黄耘,刘泽民等,2022. 日本 M W9.0地震前后郯庐断裂带中南段构造应力场动态变化特征. 地球物理学报,65(6):2124−2136.

    Sun Y. J., Huang Y., Liu Z. M., et al., 2022. Dynamic variation characteristics of tectonic stress field in the middle-southern segment of Tan-Lu fault zone before and after the 2011 Tohoku-Oki M W9.0 earthquake. Chinese Journal of Geophysics, 65(6): 2124−2136. (in Chinese)
    万永革,2019. 同一地震多个震源机制中心解的确定. 地球物理学报,62(12):4718−4728.

    Wan Y. G., 2019. Determination of center of several focal mechanisms of the same earthquake. Chinese Journal of Geophysics, 62(12): 4718−4728. (in Chinese)
    Chapman C. H., Leaney W. S., 2012. A new moment-tensor decomposition for seismic events in anisotropic media. Geophysical Journal International, 188(1): 343−370. doi: 10.1111/j.1365-246X.2011.05265.x
    Dreger D. S., Helmberger D. V., 1993. Determination of source parameters at regional distances with three-component sparse network data. Journal of Geophysical Research: Solid Earth, 98(B5): 8107−8125. doi: 10.1029/93JB00023
    Zhao L. S., Helmberger D. V., 1994. Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1): 91−104.
    Zhu L. P., Helmberger D. V., 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5): 1634−1641. doi: 10.1785/BSSA0860051634
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回