• ISSN 1673-5722
  • CN 11-5429/P

2023年2月6日土耳其双震地震动显著持时特征

李培旭 胡进军 赵一男 丁龙兵 刘巴黎

李培旭,胡进军,赵一男,丁龙兵,刘巴黎,2024. 2023年2月6日土耳其双震地震动显著持时特征. 震灾防御技术,19(3):446−456. doi:10.11899/zzfy20240303. doi: 10.11899/zzfy20240303
引用本文: 李培旭,胡进军,赵一男,丁龙兵,刘巴黎,2024. 2023年2月6日土耳其双震地震动显著持时特征. 震灾防御技术,19(3):446−456. doi:10.11899/zzfy20240303. doi: 10.11899/zzfy20240303
Li Peixu, Hu Jinjun, Zhao Yinan, Ding Longbing, Liu Bali. Ground-motion Significant Duration Characteristic of the Double Earthquakes on February 6, 2023 in Turkey[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 446-456. doi: 10.11899/zzfy20240303
Citation: Li Peixu, Hu Jinjun, Zhao Yinan, Ding Longbing, Liu Bali. Ground-motion Significant Duration Characteristic of the Double Earthquakes on February 6, 2023 in Turkey[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 446-456. doi: 10.11899/zzfy20240303

2023年2月6日土耳其双震地震动显著持时特征

doi: 10.11899/zzfy20240303
基金项目: 国家重点研发计划(2022YFC3003503、2021YFC3100701)
详细信息
    作者简介:

    李培旭,男,生于1998年。硕士。主要从事设计地震动参数研究。E-mail:1660585747@qq.com

    通讯作者:

    胡进军,男,生于1978年。研究员。主要从事地震动模型和强度指标研究。E-mail:hujinjun@iem.ac.cn

Ground-motion Significant Duration Characteristic of the Double Earthquakes on February 6, 2023 in Turkey

  • 摘要: 2023年2月6日土耳其东安纳托利亚断裂带连续发生2次MW7.8、MW7.5强震,震害调查表明地震序列下工程结构更易发生破坏。本研究选取2次强震中台站记录的311组地震动数据,通过随机效应回归方法给出了土耳其双震下水平及竖直方向5%~75%显著持时DS5-75和5%~95%显著持时DS5-95回归模型,与现有研究结果进行比较,验证了本研究回归模型的合理性。研究结果表明,土耳其2次地震竖直方向DS5-75DS5-95均明显高于水平方向,断层距>10 km时显著持时回归结果随断层距增大速率大于其他模型。本研究得到的地震动水平和竖直方向显著持时特征可为此次土耳其双震部分震害特征提供合理解释,同时表明了地震动竖向显著持时研究的重要性,可为序列型地震显著持时研究提供参考。
  • 图  1  土耳其双震震源及目标台站位置分布

    Figure  1.  Location of Turkish doublet earthquakes and target stations

    图  2  目标台站VS30值对应台站数量分布

    Figure  2.  Number distribution of VS30 value stations of target stations

    图  3  土耳其双震峰值加速度随断层距分布

    Figure  3.  Distribution of peak ground acceleration with rupture distance for the Turkish doublet earthquakes

    图  4  DS5-75DS5-95

    Figure  4.  Example of significant durations DS5-75 and DS5-95 for a ground motion record

    图  5  土耳其双震地震动显著持时回归结果

    Figure  5.  Significant duration regression results of the Turkish doublet earthquakes

    图  6  MW7.5地震DS5-75DS5-95事件内残差随Rrup变化

    Figure  6.  Within-event residuals of DS5-75 and DS5-95 of MW7.5 earthquake change with Rrup

    图  7  MW7.8地震DS5-75DS5-95事件内残差随Rrup变化

    Figure  7.  Within-event residuals of DS5-75 and DS5-95 of MW7.8 earthquake change with Rrup

    图  8  MW7.5地震DS5-75DS5-95事件内残差随VS30变化

    Figure  8.  Within-event residuals of DS5-75 and DS5-95 of MW7.5 earthquake change with VS30

    图  9  MW7.8地震DS5-75DS5-95事件内残差随VS30变化

    Figure  9.  Within-event residuals of DS5-75 and DS5-95 of MW7.8 earthquake change with VS30

    图  10  DS5-75DS5-95对比结果

    Figure  10.  Comparison of results of DS5-75 and DS5-95

    图  11  MW7.5地震下不同预测模型水平方向DS5-75DS5-95对比

    Figure  11.  Comparison of DS5-75 and DS5-95 of horizontal component for different prediction models under MW7.5 earthquake

    图  12  MW7.8地震下不同预测模型水平方向DS5-75DS5-95对比

    Figure  12.  Comparison of DS5-75 and DS5-95 of horizontal component for different prediction models under MW7.8 earthquake

    表  1  土耳其双震震源信息及地震动记录数量

    Table  1.   The source information and the number of ground motion records of the Turkish doublet earthquakes

    震级/级 纬度/(°N) 经度/(°E) 震源深度/km 地震发生时间 记录数量/组
    7.8 37.225 37.021 17.5 2023-02-06 04:17 159
    7.5 38.024 37.203 13.5 2023-02-06 13:24 152
    下载: 导出CSV

    表  2  DS5-75DS5-95回归系数与事件内和事件间方差

    Table  2.   Regression coefficients DS5-75 and DS5-95 and variance within and between events

    回归系数 MW7.5地震 MW7.8地震
    水平方向 竖直方向 水平方向 竖直方向
    DS5-75 DS5-95 DS5-75 DS5-95 DS5-75 DS5-95 DS5-75 DS5-95
    a1 1.270 9 2.313 0 1.003 0 1.487 1 2.838 8 3.271 5 1.293 4 2.258 8
    a2 0.467 5 0.394 2 0.513 0 0 0.411 3 0.353 3 0.902 5 0.632 6
    a3 1.030 9 0.707 8 0.836 2 0.558 1 0.519 8 0.502 6 0.427 8 0.402 8
    a4 −0.044 7 −0.046 7 −0.001 4 −0.001 4 −0.194 3 −0.136 5 −0.104 8 −0.074 7
    h 2.351 6 13.760 8 1 1 2 2 2 2
    R 150 120 120 0 160 150 10 10
    $ {\sigma }_{\eta }^{2} $ 0.080 0.059 0.061 0.049 0.094 0.052 0.062 0.046
    $ \sigma_{\varepsilon}^2 $ 0.062 0.051 0.053 0.040 0.084 0.042 0.052 0.039
    $ {\sigma }^{2} $ 0.102 0.078 0.081 0.063 0.126 0.067 0.081 0.060
    下载: 导出CSV

    表  3  显著持时模型参数适用范围

    Table  3.   Application range of significant duration model parameters

    显著持时模型 震级MW 断层距Rrup/km 数据集VS30/(m·s−1)
    KS06 5.0~7.6 0~200 100~2 000
    BSA09 4.8~7.9 0~100 100~2 000
    AS16 5.0~8.0 0~300 150~1 500
    DW17 3.0~7.9 0~300 100~2 000
    BRG21 4.0~9.0 0~200 110~2 000
    本文模型 7.5、7.8 0~500 0~1 600
    下载: 导出CSV
  • 白玉柱,徐锡伟,2017. 由强震动数据分析芦山地震地面运动持时及周期特征. 地震地质,39(1):92−103. doi: 10.3969/j.issn.0253-4967.2017.01.007

    Bai Y. Z., Xu X. W., 2017. Analysis on the characteristics of duration and period of ground motion of the Lushan earthquake based on the station records. Seismology and Geology, 39(1): 92−103. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.01.007
    薄景山,李琪,孙强强等,2021. 场地分类研究现状及有关问题的讨论. 自然灾害学报,30(3):1−13.

    Bo J. S., Li Q., Sun Q. Q., et al., 2021. Site classification research status and discussion of related issues. Journal of Natural Disasters, 30(3): 1−13. (in Chinese)
    韩建平,程诗焱,于晓辉等,2021. 地震动持时对RC框架结构易损性与抗震性能影响. 建筑结构学报,42(11):116−127.

    Han J. P., Cheng S. Y., Yu X. H., et al., 2021. Effect of ground motion duration on fragility and seismic performance of RC frame structures. Journal of Building Structures, 42(11): 116−127. (in Chinese)
    黄勇,谢亚晨,田亮等,2023. 2023年土耳其7.8级地震交通系统震害与启示. 世界地震工程,39(3):1−15.

    Huang Y., Xie Y. C., Tian L., et al., 2023. Earthquake damage and enlightenment from traffic system in 2023 Turkey M S7.8 earthquake. World Earthquake Engineering, 39(3): 1−15. (in Chinese)
    曲哲,师骁,2016. 汶川地震和鲁甸地震的脉冲型地震动比较研究. 工程力学,33(8):150−157. doi: 10.6052/j.issn.1000-4750.2015.01.0039

    Qu Z., Shi X., 2016. Comparative study on the pulse-like ground motions in the Wenchuan and the Ludian earthquakes. Engineering Mechanics, 33(8): 150−157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0039
    田浩,胡进军,谭景阳等,2022. 基于特征分类排序的典型海底地震动记录研究. 震灾防御技术,17(2):360−371.

    Tian H., Hu J. J., Tan J. Y., et al., 2022. Recommendation of ranked typical seafloor ground motions records according to characteristic classification. Technology for Earthquake Disaster Prevention, 17(2): 360−371. (in Chinese)
    王涛,陈杰,林旭川等,2023. 土耳其 M W7.8级地震房屋震害调查与分析. 防灾博览,(2):10−17.

    Wang T., Chen J., Lin X. C., et al., 2023. Investigation and analysis of earthquake damage to buildings in Turkey M W7.8 earthquake. Overview of Disaster Prevention, (2): 10−17. (in Chinese)
    王维,李爱群,王星星,2024. 长持时地震动对建筑结构抗震影响的研究进展. 工程力学,41(9):18−30.

    Wang W., Li A. Q., Wang X. X., 2024. Research progress of long-duration ground motion effects on structures. Engineering Mechanics, 41(9): 18−30. (in Chinese)
    王志涛,王巨,郭小东,2023. 地震动持时在工程抗震设计中的研究现状与展望. 震灾防御技术,18(1):147−163. doi: 10.11899/zzfy20230116

    Wang Z. T., Wang J., Guo X. D., 2023. Research status and prospect of earthquake duration in engineering anti-seismic design. Technology for Earthquake Disaster Prevention, 18(1): 147−163. (in Chinese) doi: 10.11899/zzfy20230116
    徐培彬,温瑞智,2018. 基于我国强震动数据的地震动持时预测方程. 地震学报,40(6):809−819.

    Xu P. B., Wen R. Z., 2018. The prediction equations for the significant duration of strong motion in Chinese mainland. Acta Seismologica Sinica, 40(6): 809−819. (in Chinese)
    张升,李兆焱,张思宇等,2023. 2023年土耳其7.8级地震灾害特征. 世界地震工程,39(3):45−55.

    Zhang S., Li Z. Y., Zhang S. N., et al., 2023. Disaster characteristics of Turkey M 7.8 earthquake in 2023. World Earthquake Engineering, 39(3): 45−55. (in Chinese)
    Abrahamson N. A., Youngs R. R., 1992. A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82(1): 505−510. doi: 10.1785/BSSA0820010505
    Afshari K., Stewart J. P., 2016. Physically parameterized prediction equations for significant duration in active crustal regions. Earthquake Spectra, 32(4): 2057−2081. doi: 10.1193/063015EQS106M
    Bahrampouri M., Rodriguez-Marek A., Green R. A., 2021. Ground motion prediction equations for significant duration using the KiK-net database. Earthquake Spectra, 37(2): 903−920. doi: 10.1177/8755293020970971
    Bommer J. J., Stafford P. J., Alarcón J. E., 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bulletin of the Seismological Society of America, 99(6): 3217−3233. doi: 10.1785/0120080298
    Boore D. M., Stephens C. D., Joyner W. B., 2002. Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 92(4): 1543−1560. doi: 10.1785/0120000926
    Boore D. M. , Bommer J. J. , 2005 Processing of strong-motion accelerograms: needs, options and consequences. Soil Dynamics and Earthquake Engineering, 25 (2): 93−115.
    Castaldo P., Tubaldi E., 2018. Influence of ground motion characteristics on the optimal single concave sliding bearing properties for base-isolated structures. Soil Dynamics and Earthquake Engineering, 104: 346−364. doi: 10.1016/j.soildyn.2017.09.025
    Dobry R., Idriss I. M., Ng, E., 1978. Duration characteristics of horizontal components of strong-motion earthquake records. Bulletin of the Seismological Society of America, 68(5): 1487−1520.
    Du W. Q., Wang G., 2017. Prediction equations for ground‐motion significant durations using the NGA‐West2 database. Bulletin of the Seismological Society of America, 107(1): 319−333. doi: 10.1785/0120150352
    Hancock J., Bommer J. J., 2006. A state-of-knowledge review of the influence of strong-motion duration on structural damage. Earthquake Spectra, 22(3): 827−845. doi: 10.1193/1.2220576
    Hernandez B. , Cotton F. , 2000. Empirical determination of the ground shaking duration due to an earthquake using strong motion accelerograms for engineering applications. In: Proceedings of the 12th World Conference on Earthquake Engineering. Auckland: WCEE, 2254 (4).
    Kempton J. J., Stewart J. P., 2006. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthquake Spectra, 22(4): 958−1013.
    Kusky T. M., Bozkurt E., Meng J. N., et al., 2023. Twin earthquakes devastate southeast Türkiye and Syria: first report from the epicenters. Journal of Earth Science, 34(2): 291−296. doi: 10.1007/s12583-023-1317-5
    Yaghmaei-Sabegh S., Shoghian Z., Neaz Sheikh M., 2014. A new model for the prediction of earthquake ground-motion duration in Iran. Natural Hazards, 70(1): 69−92. doi: 10.1007/s11069-011-9990-6
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  5
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-02
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回