• ISSN 1673-5722
  • CN 11-5429/P

基于碎石粒径变化对土石混合体抗剪强度参数影响特征的PFC数值模拟实验研究

杨雨桐 罗永红 李传宝

杨雨桐,罗永红,李传宝,2026. 基于碎石粒径变化对土石混合体抗剪强度参数影响特征的PFC数值模拟实验研究. 震灾防御技术,x(x):1−10. doi:10.11899/zzfy20240252. doi: 10.11899/zzfy20240252
引用本文: 杨雨桐,罗永红,李传宝,2026. 基于碎石粒径变化对土石混合体抗剪强度参数影响特征的PFC数值模拟实验研究. 震灾防御技术,x(x):1−10. doi:10.11899/zzfy20240252. doi: 10.11899/zzfy20240252
Yang Yutong, Luo Yonghong, Li Chuanbao. Experimental Study on the Influence Characteristics of Gravel Particle Size Variation on the Shear Strength Parameters of Rock Soil Mixture Based on PFC Numerical Simulation[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240252
Citation: Yang Yutong, Luo Yonghong, Li Chuanbao. Experimental Study on the Influence Characteristics of Gravel Particle Size Variation on the Shear Strength Parameters of Rock Soil Mixture Based on PFC Numerical Simulation[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240252

基于碎石粒径变化对土石混合体抗剪强度参数影响特征的PFC数值模拟实验研究

doi: 10.11899/zzfy20240252
基金项目: 国家自然科学基金面上项目(42077257);地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2019 K024)
详细信息
    作者简介:

    杨雨桐,男,生于2000年。硕士研究生。主要从事工程地质学方面的研究。E-mail:790776047@qq.com

    通讯作者:

    罗永红,男,生于1981年。教授,博士生导师。主要从事工程地质学方面的研究。E-mail:lyh445890689@qq.com

Experimental Study on the Influence Characteristics of Gravel Particle Size Variation on the Shear Strength Parameters of Rock Soil Mixture Based on PFC Numerical Simulation

  • 摘要: 为了探究碎石粒径变化和大碎石含量对土石混合体抗剪强度参数内摩擦角的影响特征,本文采用离散元PFC 3D,并基于西南某泥石流堆积体级配特征,对其粒径大小从10~60 mm和大粒径碎石含量从10%~90%等试样构建岩土体柔性三轴数值模型共计44个,开展数值试验分析。模拟结果表明:对比相同粒径的均匀圆形颗粒模型与不规则碎石模型,其内摩擦角随着粒径的增大呈现出增大趋势,且后者内摩擦角大于前者,最大内摩擦角分别达到39.05°和43.27°;当碎石粒径<30 mm时内摩擦角的增幅不明显;相同粒径条件下,碎石模型的内摩擦角大于均匀圆形颗粒模型,揭示了内摩擦角会受到碎石颗粒形状的影响;大碎石含量对岩土体内摩擦角起着一定的控制作用,对比混合粒径碎石模型和土石混合模型,其内摩擦角随大碎石含量的增大而增大,前者内摩擦角的增幅小于后者,当大碎石含量>50%时内摩擦角的增幅较为明显,两者内摩擦角的增幅分别为8.34°和14.08°;当粒径分布特征指标中的限制粒径d60在10~30 mm,其内摩擦角随d60的增大而增大,当d60>30 mm后,其内摩擦角随d60的增大而减小。
  • 图  1  堆积体的颗粒级配曲线

    Figure  1.  Particle size gradation curve of the accumulation

    图  2  土石混合试样抗剪强度参数与含石量关系

    Figure  2.  The relationship between shear strength parameters and stone content of soil rock mixed samples

    图  3  细观参数标定结果与室内三轴试验结果对比图

    Figure  3.  Comparison of micro-scale parameter calibration results with indoor triaxial test results

    图  4  Clump模板生成示意图

    Figure  4.  Schematic diagram of clump template generation

    图  5  均匀颗粒模型和其对应碎石三轴模型

    Figure  5.  Uniform particle model and its corresponding crushed stone triaxial model

    图  6  混合粒径碎石模型和土石混合级配模型

    Figure  6.  Model of mixed-size crushed stone and gradation model of soil-rock mixtures

    图  7  模型试验结果

    Figure  7.  Results of the model test

    图  8  30 mm粒径的均匀颗粒模型和碎石模型的偏应力-应变结果

    Figure  8.  Stress-strain results for uniform particle and crushed stone models with a 30 mm particle size

    图  9  均匀模型和碎石模型内摩擦角随粒径变化的对比图

    Figure  9.  Comparison of internal friction angle varying with particle size between the uniform and gravel models

    图  10  模型试验结果

    Figure  10.  Results of the model test

    图  11  大粒径含量70 %的碎石模型和土石混合级配模型的偏应力-应变结果

    Figure  11.  Deviatoric stress-strain results for the crushed stone model with 70% large particle size and the soil-rock mixed gradation model

    图  12  混合粒径碎石模型内摩擦角随60 mm大碎石含量的变化

    Figure  12.  The variation of internal friction angle of mixed particle size crushed stone model with 60 mm large crushed stone content

    图  13  土石混合模型内摩擦角随60 mm大碎石含量的变化

    Figure  13.  The variation of internal friction angle of soil-rock mixed model with 60 mm large gravel content

    图  14  土石混合模型内摩擦角随d60的变化规律

    Figure  14.  The variation law of internal friction angle with d60 in soil-rock mixed model

    表  1  试样细观参数取值

    Table  1.   Meso-parameters values of the specimen

    接触类型 密度/(kg·m−3) 有效模量/(N·m−2) 刚度比 摩擦系数
    ball-facet 2×108 1.5 0.5
    pebble-facet 2×108 1.5 0.5
    pebble- pebble 2.5×103 1×108 1.5 0.5
    ball-pebble 1×108 1.5 0.5
    ball-ball 2.0×103 1×108 1.5 0.5
    下载: 导出CSV
  • 安然, 孔令伟, 张先伟等, 2023. 干湿循环效应下花岗岩残积土结构损伤的多尺度研究. 岩石力学与工程学报, 42(3): 758−767. doi: 10.13722/j.cnki.jrme.2022.0211

    An R., Kong L. W., Zhang X. W., et al., 2023. A multi-scale study on structure damage of granite residual soil under wettingdrying environments. Chinese Journal of Rock Mechanics and Engineering, 42(3): 758−767. (in Chinese) doi: 10.13722/j.cnki.jrme.2022.0211
    柴贺军, 阎宗岭, 贾学明, 2009. 土石混填路基修筑技术. 北京: 人民交通出版社, 1−20.
    董云, 2007. 土石混合料强度特性的试验研究. 岩土力学, 28(6): 1269−1274.

    Dong Y., 2007. Experimental study on intensity character of rock-soil aggregate mixture. Rock and Soil Mechanics, 28(6): 1269−1274. (in Chinese)
    高春玉, 徐进, 刘建锋等, 2010. 四川盆地区红层无粘性土石混合料强度参数预测模型研究. 四川大学学报(工程科学版), 42(6): 61−65.

    Gao C. Y., Xu J., Liu J. F., et al., 2010. Study on the strength parameter prediction model of red layer non-cohesive soil rock mixture in Sichuan basin. Journal of Sichuan University (Engineering Science Edition), 42(6): 61−65. (in Chinese)
    蒋德旺, 崔鹏, 王姣等, 2019. 细粒含量对冰碛土抗剪强度影响的实验研究. 冰川冻土, 41(1): 129−139.

    Jiang D. W., Cui P., Wang J., et al., 2019. Experimental study on the effect of shear strength of moraine soil with fine grain content. Journal of Glaciology and Geocryology, 41(1): 129−139. (in Chinese)
    雷晓丹, 杨忠平, 张晓景等, 2018. 土石混合料剪切特性及块石破碎特征. 岩土力学, 39(3): 899−908.

    Lei X. D., Yang Z. P., Zhang X. J., et al., 2018. Shear properties and rock block breakage characteristics of soil-rock mixtures. Rock and Soil Mechanics, 39(3): 899−908. (in Chinese)
    李进, 2022. 土石混合体−基岩界面剪切力学特性研究. 重庆: 重庆大学.

    Li J., 2022. Study on shear mechanical properties of soil-rock mixture-bedrock interface. Chongqing: Chongqing University. (in Chinese)
    李立卫国, 2023. 土石混合料的剪切特性尺寸效应研究. 重庆: 重庆交通大学.

    Li L. W. G., 2023. Study on size effect of shear properties of soil-rock mixture. Chongqing: Chongqing Jiaotong University. (in Chinese)
    罗亚琼, 张超, 马婷婷, 2022. 考虑含石量与颗粒级配特征影响的土石混合体抗剪强度特性研究. 公路, 67(12): 47−53.

    Luo Y. Q., Zhang C., Ma T. T., 2022. Research on shear strength characteristics of soil-rock mixture considering the influence of rock content and particle gradation. Highway, 67(12): 47−53. (in Chinese)
    欧阳振华, 李世海, 戴志胜, 2010. 块石对土石混合体力学性能的影响研究. 实验力学, 25(1): 61−67.

    Ouyang Z. H., Li S. H., Dai Z. S., 2010. On the influence factors of mechanical properties for soil rock mixture. Journal of Experimental Mechanics, 25(1): 61−67. (in Chinese)
    孙华飞, 鞠杨, 王晓斐等, 2014. 土石混合体变形破坏及细观机理研究的进展. 中国科学: 技术科学, 44(2): 172−181.

    Sun H. F., Ju Y., Wang X. F., et al., 2014. Review of the study on deformation, failure and the meso-mechanisms of rock-soil mixture (RSM). Science China Technological Sciences (Chinese Version), 44(2): 172−181. (in Chinese)
    唐红梅, 延兆奇, 陈洪凯, 2016. 三峡水库岸坡崩坡堆积物力学特性数值试验研究. 重庆师范大学学报(自然科学版), 33(5): 42−49. doi: 10.11721/cqnuj20160526

    Tang H. M., Yan Z. Q., Chen H. K., 2016. Numerical test of colluvium's mechanical properties in three gorges reservoir based on discrete element method. Journal of Chongqing Normal University (Natural Science), 33(5): 42−49. (in Chinese) doi: 10.11721/cqnuj20160526
    涂义亮, 李璐珊, 方忠等, 2025. 块石形状对土石混合料宏细观剪切力学特性的影响. 工程力学, 42(6): 126−135.

    Tu Y. L., Li L. S., Fang Z., et al., 2024. Effect of rock block shape on macro-meso-shear mechanical properties of soil-rock mixture. Engineering Mechanics, 1−12. (in Chinese)
    王江营, 2014. 土石混填体变形力学特性及其地基稳定性分析方法. 长沙: 湖南大学.

    Wang J. Y., 2014. Research on deformation characteristics of soil-rock aggregate mixture and stability analysis method of soil-rock filled foundation. Changsha: Hunan University. (in Chinese)
    王鹏, 2017. 土石混合体大型三轴试验及其细观力学特性的PFC模拟. 重庆: 重庆大学.

    Wang P., 2017. Soil-rock-mixture large-scale triaxial test and mesoscopic mechanics characteristics of PFC simulation. Chongqing: Chongqing University. (in Chinese)
    王新, 2010. 土石混合体力学特性影响因素及破坏机制研究. 武汉: 长江科学院.

    Wang X., 2010. Research on influence factors of mechanics characteristics and failure mechanism of soil-rock mixture. Wuhan: Changjiang River Scientific Research Institute. (in Chinese)
    王宇, 李晓, 赫建明等, 2014. 土石混合体细观特性研究现状及展望. 工程地质学报, 22(1): 112−123.

    Wang Y., Li X., He J. M., et al., 2014. Research status and prospect of rock and soil aggregate. Journal of Engineering Geology, 22(1): 112−123. (in Chinese)
    吴红波, 李占甫, 江山等, 2023. 含石量对千枚岩土石混合体剪切特性影响的颗粒流数值模拟. 公路, 68(5): 274−282.

    Wu H. B., Li Z. F., Jiang S., et al., 2023. Numerical simulation of influence of rock content on shear characteristics of rock-rock mixture by particle flow. Highway, 68(5): 274−282. (in Chinese)
    徐文杰, 胡瑞林, 岳中琦等, 2008. 基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究. 岩石力学与工程学报, 27(5): 996−1007. doi: 10.3321/j.issn:1000-6915.2008.05.016

    Xu W. J., Hu R. L., Yue Z. Q., et al., 2008. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test. Chinese Journal of Rock Mechanics and Engineering, 27(5): 996−1007. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.016
    杨忠平, 雷晓丹, 王雷等, 2017. 含石量对土石混合体剪切特性影响的颗粒离散元数值研究. 工程地质学报, 25(4): 1035−1045.

    Yang Z. P., Lei X. D., Wang L., et al., 2017. Impact of stone content to shear properties of soil-rock mixture using particle flow code simulation. Journal of Engineering Geology, 25(4): 1035−1045. (in Chinese)
    油新华, 2002. 土石混合体的随机结构模型及其应用研究. 岩石力学与工程学报, 21(11): 1748.

    You X. H., 2002. Stochastic structural model of the earth-rock aggregate and its application. Chinese Journal of Rock Mechanics and Engineering, 21(11): 1748. (in Chinese)
    Zhang M. C., Liu X. R., Wang P., et al., 2019. Shear properties and failure meso-mechanism of soil-rock mixture composed of mudstone under different rock block proportions. Journal of Civil and Environmental Engineering, 41(6): 17−26. (in Chinese)
    张强, 汪小刚, 赵宇飞等, 2019. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究. 岩土工程学报, 41(8): 1545−1554.

    Zhang Q., Wang X. G., Zhao Y. F., et al., 2019. Discrete element simulation of large-scale triaxial tests on soil-rock mixtures based on flexible loading of confining pressure. Chinese Journal of Geotechnical Engineering, 41(8): 1545−1554. (in Chinese)
    钟祖良, 涂义亮, 何晓勇等, 2016. 土石混合体物理指标及强度特性研究进展. 地下空间与工程学报, 12(4): 1135−1144.

    Zhong Z. L., Tu Y. L., He X. Y., et al., 2016. Research progress on physical index and strength characteristics of bimsoils. Chinese Journal of Underground Space and Engineering, 12(4): 1135−1144. (in Chinese)
    Charles J. A., Watts K. S., 1980. The influence of confining pressure on the shear strength of compacted rockfill. Géotechnique, 30(4): 353−367. doi: 10.1680/geot.1980.30.4.353
    Coli N., Berry P., Boldini D., 2011. In situ non-conventional shear tests for the mechanical characterisation of a bimrock. International Journal of Rock Mechanics and Mining Sciences, 48(1): 95−102. doi: 10.1016/j.ijrmms.2010.09.012
    Kalender A., Sonmez H., Medley E., et al., 2014. An approach to predicting the overall strengths of unwelded bimrocks and bimsoils. Engineering Geology, 183: 65−79. doi: 10.1016/j.enggeo.2014.10.007
    Medley E. W. , 1994. The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks). California: University of California at Berkeley.
    Shi C., Wang S. N., Liu L., et al., 2013. Mesomechanical simulation of direct shear test on outwash deposits with granular discrete element method. Journal of Central South University, 20(4): 1094−1102. doi: 10.1007/s11771-013-1589-5
    Varadarajan A., Sharma K. G., Venkatachalam K., et al., 2003. Testing and modeling two rockfill materials. Journal of Geotechnical and Geoenvironmental Engineering, 129(3): 206−218. doi: 10.1061/(ASCE)1090-0241(2003)129:3(206)
    Zhong Z. L., Tu Y. L., He X. Y., et al., 2016. Research progress on physical index and strength characteristics of bimsoils. Chinese Journal of Underground Space and Engineering, 12(4): 1135−1144. (in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 录用日期:  2025-02-20
  • 修回日期:  2025-02-18
  • 网络出版日期:  2026-02-11

目录

    /

    返回文章
    返回