Seismic Vulnerability Analysis of High-Pier Bridges Based on Nataf Transform Considering Pile-Earth Effects
-
摘要: 土层可以显著改变地震动的幅值和频谱成分,从而改变桥梁的地震响应,忽略桩土相互作用(PSI)的影响将导致桥梁抗震性能评估失真。为更准确描述高墩桥梁在桩土作用效应下的抗震性能,基于OpenSees有限元软件将PSI考虑为非线性p-y约束与土层滤波效应的组合建立高墩桥梁桩-土体系三维模型,以地震峰值加速度PGA为地震动强度指标,以桥墩截面曲率和支座位移为损伤指标,引入Nataf变换去考虑桥梁各构件的地震响应参数相关性,并构建多维极限状态方程,选取18条地震动记录对上述桥梁体系进行水平双向增量动力非线性分析,建立高墩桥梁的地震易损性曲线并对抗震性能进行评估。研究结果表明:采用非线性p-y约束能够有效模拟桩土作用效应;在强震条件下,对桥梁损伤程度越高的状态,其评估更加精确;土层滤波后对地震波放大作用明显,从而使得桥梁结构地震响应在各损伤阶段的超越概率大幅上升;高墩横桥向损伤概率略高于纵桥向损伤概率应优先考虑横向设计。在高墩桥梁的抗震设计阶段不能忽略土层滤波的影响,否则会提高桥梁抗震需求能力。Abstract: The s oil layers can significantly change the amplitude and spectral components of ground shaking, thus altering the seismic response of bridges, and neglecting the effects of pile-soil interaction (PSI) will result in a distorted assessment of the seismic performance of bridges. In order to more accurately describe the seismic performance of high pier bridges under the effect of pile-soil action, a three-dimensional model of the pile-soil system of high pier bridges was established based on the OpenSees finite element software by considering the PSI as a combination of the nonlinear p-y constraints and the soil layer filtering effect, and the peak acceleration of the earthquake (PGA) was taken as an indicator of the strength of the ground shaking, and the curvature of the pier cross-section and the displacement of the bearings were taken as the indicators of the damage, and the Nataf transform was introduced to consider the correlation of the seismic response parameters of the bridge components, and a multidimensional limit state equation was constructed. The Nataf transform is introduced to consider the correlation of the seismic response parameters of the bridge components, and the multidimensional limit state equations are constructed. 18 ground vibration records are selected to carry out the horizontal bidirectional incremental dynamic nonlinear analysis of the above bridge system, and the seismic susceptibility curves of the high-pier bridges are established and evaluated for the seismic performance. The research results show that: the use of nonlinear p-y constraints can effectively simulate the effect of pile-soil action; under strong seismic conditions, the higher the degree of damage to the bridge state, the more accurate its assessment; soil layer filtering after the seismic wave amplification effect is obvious that makes the bridge structural seismic response in the various stages of damage beyond the probability of a substantial increase; high piers transverse to the probability of damage to be slightly higher than the probability of longitudinal damage to be preferred to consider the transverse design. The effect of soil filtering cannot be ignored in the seismic design phase of high pier bridges, otherwise the bridge seismic performance will be overestimated.
-
表 1 混凝土材料本构模型参数
Table 1. Constitutive model parameters for concrete Material
材料 抗压强度/MPa 抗压强度应变 极限强度/MPa 极限抗压强度应变 核心混凝土 −3.45×104 −0.004 −2.07×104 −0.014 保护层混凝土 −2.76×104 −0.002 −1.07 ×104 −0.008 表 2 钢筋本构模型参数
Table 2. Parameters of the constitutive model for steel reinforcement
材料 抗拉强度fy/MPa 弹性模量E0/MPa 屈服后刚度比b 钢筋 345 2.0×105 0.02 表 3 场地土层表
Table 3. Soil layer of the site
土层 土体饱和重度/(kN·m−3) 剪切波速/(m·s−1) 剪切模量/kPa 土层厚度/m 1 18.6 175 57575.00 2 2 18.6 134 33757.28 4 3 18.6 178 59565.92 4.5 4 18.1 178 54813.32 5 5 18.7 207 74128.77 3 6 20.1 165 47099.25 7.5 7 18.7 317 179875.31 4.5 8 18.1 267 143290.89 30 9 18.5 267 129033.09 11.5 10 19.1 386 278622.52 13 表 4 18条地震动记录
Table 4. Eighteen seismic records
序号 地震名称 年份 测站名称 震级 1 Tabas_ Iran 1978 Tabas 7.35 2 Loma Prieta 1989 Agnews State Hospital 6.93 3 Loma Prieta 1989 Hollister - SAGO Vault 6.93 4 Landers 1992 Barstow 7.28 5 Cape Mendocino 1992 Loleta Fire Station 7.01 6 Northridge-01 1994 Newhall - Fire Sta 6.69 7 Duzce_ Turkey 1999 Lamont 1060 7.14 8 Duzce_ Turkey 1999 Mudurnu 7.14 9 Duzce_ Turkey 1999 Sakarya 7.14 10 Hector Mine 1999 Twenty nine Palms 7.13 11 Chi-Chi_ Taiwan 1999 CHY006 7.62 12 Iwate_ Japan 2008 YMT002 6.9 13 Iwate_ Japan 2008 YMT017 6.9 14 Darfield_ New Zealand 2010 ADCS 7 15 Darfield_ New Zealand 2010 Canterbury Aero Club 7 16 Darfield_ New Zealand 2010 DORC 7 17 El Mayor-Cucapah_Mexico 2010 El Centro Array #7 7.2 18 El Mayor-Cucapah_Mexico 2010 Sam W. Stewart 7.2 表 5 桥梁构件各状态损伤指标
Table 5. Damage indicators of various states of bridge components
损伤状态 损伤指标 桥墩曲率延性比 支座相对位移/m 轻微破坏 1 0.2 中等破坏 2 0.4 严重破坏 4 0.6 完全破坏 7 0.8 表 6 桥梁纵桥向地震反应均值标准差及相关系数
Table 6. Standard deviation and correlation coefficient of seismic response of bridge components in X direction
峰值地面加速度/g 桥墩 支座 相关系数 均值 标准差 均值 标准差 0.1 0.440513 0.161061 0.1769 0.1603 0.805469 0.2 0.670180 0.199617 0.4597 0.2934 0.844633 0.3 0.855186 0.211546 0.8055 0.4594 0.801741 0.4 1.006439 0.225469 1.0752 0.5669 0.745297 0.5 1.129340 0.245826 1.2738 0.6248 0.704433 0.6 1.222804 0.231213 1.4109 0.6396 0.566617 0.7 1.287625 0.252197 1.5501 0.6741 0.532768 0.8 1.367128 0.281345 1.6403 0.6791 0.533813 0.9 1.470091 0.285086 1.7726 0.6663 0.648648 1.0 1.542717 0.345355 1.8516 0.6061 0.639064 1.1 1.596118 0.395451 1.8682 0.5494 0.501254 1.2 1.604480 0.357012 1.8961 0.5987 0.526271 -
陈安龙, 于雷, 郑云龙, 2000. 基于Rosenblatt变换的一阶可靠度分析方法. 大连理工大学学报, 40(6): 741−743. doi: 10.3321/j.issn:1000-8608.2000.06.028Chen A. L., Yu L., Zheng Y. L., 2000. First-order reliability method based on Rosenblatt transformation. Journal of Dalian University of Technology, 40(6): 741−743. (in Chinese) doi: 10.3321/j.issn:1000-8608.2000.06.028 单德山, 苑洁艺, 董俊等, 2021. 桥梁构件三维地震易损性分析. 铁道学报, 43(9): 133−142. doi: 10.3969/j.issn.1001-8360.2021.09.018Shan D. S., Yuan J. Y., Dong J., et al., 2021. 3D seismic vulnerability analysis of bridge structural components. Journal of the China Railway Society, 43(9): 133−142. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.09.018 董俊, 曾永平, 单德山, 2019. 高墩大跨铁路桥梁构件三维地震易损性分析. 哈尔滨工业大学学报, 51(3): 141−149. doi: 10.11918/j.issn.0367-6234.201712079Dong J., Zeng Y. P., Shan D. S., 2019. Three-dimensional seismic vulnerability analysis of long-span railway bridge components with high pier. Journal of Harbin Institute of Technology, 51(3): 141−149. (in Chinese) doi: 10.11918/j.issn.0367-6234.201712079 苟小英, 2024. 考虑构件失效相关性的桥梁系统地震易损性研究. 重庆: 重庆三峡学院. 赫传凯, 陈静, 2021. 空心高墩铁路桥梁地震易损性分析. 工程抗震与加固改造, 43(3): 32−39. doi: 10.16226/j.issn.1002-8412.2021.03.005He C. K., Chen J., 2021. Seismic fragility analysis of hollow high-pier railway-bridge. Earthquake Resistant Engineering and Retrofitting, 43(3): 32−39. (in Chinese) doi: 10.16226/j.issn.1002-8412.2021.03.005 姬路遥, 2021. 考虑场地土效应及其不确定性的地震动记录选取研究. 哈尔滨: 哈尔滨工业大学.Ji L. Y. , 2021. Research on selection of ground motion records considering site soil effect and its uncertainty. Harbin: Harbin Institute of Technology. (in Chinese). (in Chinese) 李佳璐, 任乐平, 胡伟, 2022. Nataf变换的桥梁系统多维地震易损性分析方法. 交通运输工程学报, 22(1): 82−92. doi: 10.19818/j.cnki.1671-1637.2022.01.006Li J. L., Ren L. P., Hu W., 2022. Multi-dimensional seismic fragility analysis method of bridge system based on Nataf transformation. Journal of Traffic and Transportation Engineering, 22(1): 82−92. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.006 沈国煜, 袁万城, 庞于涛, 2014. 基于Nataf变换的桥梁结构地震易损性分析. 工程力学, 31(6): 93−100.Shen G. Y., Yuan W. C., Pang Y. T., 2014. Bridge seismic fragility analysis based on Nataf transformation. Engineering Mechanics, 31(6): 93−100. (in Chinese) 申彦利, 魏博, 陈伟湖, 2020. 基于易损性的RC桥墩复合损伤指标适用性分析. 广西大学学报(自然科学版), 45(1): 46−52. doi: 10.13624/j.cnki.issn.1001-7445.2020.0046Shen Y. L., Wei B., Chen W. H., 2020. Applicability analysis of composite damage index of RC pier based on vulnerability. Journal of Guangxi University (Natural Science Edition), 45(1): 46−52. (in Chinese) doi: 10.13624/j.cnki.issn.1001-7445.2020.0046 申彦利, 陈伟湖, 魏博, 2021. 基于振动台试验的桥墩复合损伤指标研究. 防灾减灾工程学报, 41(5): 987−1000. doi: 10.13409/j.cnki.jdpme.201906050Shen Y. L., Chen W. H., Wei B., 2021. Study on composite damage index of bridge pier based on shaking table test. Journal of Disaster Prevention and Mitigation Engineering, 41(5): 987−1000. (in Chinese) doi: 10.13409/j.cnki.jdpme.201906050 张健, 师新虎, 刘志强, 2023. 大跨度整体式高墩桥梁地震易损性分析. 噪声与振动控制, 43(3): 212−219. doi: 10.3969/j.issn.1006-1355.2023.03.033Zhang J., Shi X. H., Liu Z. Q., 2023. Seismic vulnerability analysis of long-span integral high-pier bridges. Noise and Vibration Control, 43(3): 212−219. (in Chinese) doi: 10.3969/j.issn.1006-1355.2023.03.033 郑凯锋, 陈力波, 庄卫林等, 2013. 基于概率性地震需求模型的桥梁易损性分析. 工程力学, 30(5): 165−171, 187. doi: 10.20000/j.1000-0844.20231019002Zheng K. F., Chen L. B., Zhuang W. L., et al., 2013. Bridge vulnerability analysis based on probabilistic seismic demand models. Engineering Mechanics, 30(5): 165−171,187. (in Chinese) doi: 10.20000/j.1000-0844.20231019002 Baise L. G., Glaser S. D., Dreger D., 2003. Site response at Treasure and Yerba Buena Islands, California. Journal of Geotechnical and Geoenvironmental Engineering, 129(5): 415−426. doi: 10.1061/(ASCE)1090-0241(2003)129:6(415) Ceravolo R., Demarie G. V., Giordano L., et al., 2009. Problems in applying code-specified capacity design procedures to seismic design of tall piers. Engineering Structures, 31(8): 1811−1821. doi: 10.1016/j.engstruct.2009.02.042 Chen X., Guan Z. G., Spencer Jr. B. F., et al., 2018. A simplified procedure for estimating nonlinear seismic demand of tall piers. Engineering Structures, 174: 778−791. doi: 10.1016/j.engstruct.2018.07.102 Chen X., 2020. System fragility assessment of tall-pier bridges subjected to near-fault ground motions. Journal of Bridge Engineering, 25(3): 04019143. doi: 10.1061/(ASCE)BE.1943-5592.0001526 Cimellaro G. P., Reinhorn A. M., Bruneau M., 2010. Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11): 3639−3649. doi: 10.1016/j.engstruct.2010.08.008 Freudenthal A. M., 1956. Safety and the probability of structural failure. Transactions of the American Society of Civil Engineers, 121(1): 1337−1375. doi: 10.1061/TACEAT.0007306 Hashash Y. M. A. , 2024. A nonlinear and equivalent linear seismic site response of 1-D soil columns. In: Hashash Y. M. A. , ed. , User Manual. Urbana: Board of Trustees of University of Illinois at Urbana-Champaign, 1−184. Hasofer A. M., 1974. Reliability index and failure probability. Journal of Structural Mechanics, 3(1): 25−27. doi: 10.1080/03601217408907254 HAZUS99, F. E. M. A. , 1999. Earthquake loss estimation methodology: user’s manual. Washington: Federal Emergency Management Agency. Meng Q. L. , Yin X. , 2013. The study on 3D seismic pounding of the high-pier bridge under strong earthquake. In: International Efforts in Lifeline Earthquake Engineering. Chengdu: ASCE, 377−384. Mylonakis G., Gazetas G., 2000. Seismic soil-structure interaction: beneficial or detrimental?. Journal of Earthquake Engineering, 4(3): 277−301. Padgett J. E., Nielson B. G., DesRoches R., 2008. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering & Structural Dynamics, 37(5): 711−725. -
下载: