• ISSN 1673-5722
  • CN 11-5429/P

基于Nataf变换考虑桩土作用效应下高墩桥梁地震易损性分析

张鹏 申彦利 金如意

张鹏,申彦利,金如意,2025. 基于Nataf变换考虑桩土作用效应下高墩桥梁地震易损性分析. 震灾防御技术,x(x):1−12. doi:10.11899/zzfy20240245. doi: 10.11899/zzfy20240245
引用本文: 张鹏,申彦利,金如意,2025. 基于Nataf变换考虑桩土作用效应下高墩桥梁地震易损性分析. 震灾防御技术,x(x):1−12. doi:10.11899/zzfy20240245. doi: 10.11899/zzfy20240245
Zhang Peng, Shen Yanli, Jin Ruyi. Seismic Vulnerability Analysis of High-Pier Bridges Based on Nataf Transform Considering Pile-Earth Effects[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240245
Citation: Zhang Peng, Shen Yanli, Jin Ruyi. Seismic Vulnerability Analysis of High-Pier Bridges Based on Nataf Transform Considering Pile-Earth Effects[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240245

基于Nataf变换考虑桩土作用效应下高墩桥梁地震易损性分析

doi: 10.11899/zzfy20240245
基金项目: 国家自然科学基金项目(51378169);河北省高等学校科学技术研究重点项目(ZD2016147)
详细信息
    作者简介:

    张鹏,男,生于1999年。硕士研究生。主要从事桥梁结构抗震方面研究。E-mail:zpwd152901@163.com

    通讯作者:

    金如意,男,生于1997年。博士研究生。主要从事结构抗震工程学方面研究。E-mail:jinry@csu.edu.cn

Seismic Vulnerability Analysis of High-Pier Bridges Based on Nataf Transform Considering Pile-Earth Effects

  • 摘要: 土层可以显著改变地震动的幅值和频谱成分,从而改变桥梁的地震响应,忽略桩土相互作用(PSI)的影响将导致桥梁抗震性能评估失真。为更准确描述高墩桥梁在桩土作用效应下的抗震性能,基于OpenSees有限元软件将PSI考虑为非线性p-y约束与土层滤波效应的组合建立高墩桥梁桩-土体系三维模型,以地震峰值加速度PGA为地震动强度指标,以桥墩截面曲率和支座位移为损伤指标,引入Nataf变换去考虑桥梁各构件的地震响应参数相关性,并构建多维极限状态方程,选取18条地震动记录对上述桥梁体系进行水平双向增量动力非线性分析,建立高墩桥梁的地震易损性曲线并对抗震性能进行评估。研究结果表明:采用非线性p-y约束能够有效模拟桩土作用效应;在强震条件下,对桥梁损伤程度越高的状态,其评估更加精确;土层滤波后对地震波放大作用明显,从而使得桥梁结构地震响应在各损伤阶段的超越概率大幅上升;高墩横桥向损伤概率略高于纵桥向损伤概率应优先考虑横向设计。在高墩桥梁的抗震设计阶段不能忽略土层滤波的影响,否则会提高桥梁抗震需求能力。
  • 图  1  桥梁有限元模型与本构参数

    Figure  1.  Bridge finite element model and constitutive parameters

    图  2  p-y弹簧模拟桩土相互作用

    Figure  2.  Modeling of the pile-soil interaction using p-y spring

    图  3  18条基岩地震波弹性反应谱图

    Figure  3.  Elastic response spectrum of twenty seismic wave

    图  4  纵桥向地震易损性影响

    Figure  4.  Longitudinal bridge to seismic vulnerability impacts

    图  5  横桥向地震易损性影响

    Figure  5.  Influence of seismic vulnerability on transverse bridge

    图  6  E6基岩与地表地震动弹性谱对比图

    Figure  6.  Comparison of elasticity spectra of E6 bedrock and surface ground shaking

    表  1  混凝土材料本构模型参数

    Table  1.   Constitutive model parameters for concrete Material

    材料抗压强度/MPa抗压强度应变极限强度/MPa极限抗压强度应变
    核心混凝土−3.45×104−0.004−2.07×104−0.014
    保护层混凝土−2.76×104−0.002−1.07 ×104−0.008
    下载: 导出CSV

    表  2  钢筋本构模型参数

    Table  2.   Parameters of the constitutive model for steel reinforcement

    材料抗拉强度fy/MPa弹性模量E0/MPa屈服后刚度比b
    钢筋3452.0×1050.02
    下载: 导出CSV

    表  3  场地土层表

    Table  3.   Soil layer of the site

    土层土体饱和重度/(kN·m−3剪切波速/(m·s−1剪切模量/kPa土层厚度/m
    118.617557575.002
    218.613433757.284
    318.617859565.924.5
    418.117854813.325
    518.720774128.773
    620.116547099.257.5
    718.7317179875.314.5
    818.1267143290.8930
    918.5267129033.0911.5
    1019.1386278622.5213
    下载: 导出CSV

    表  4  18条地震动记录

    Table  4.   Eighteen seismic records

    序号地震名称年份测站名称震级
    1Tabas_ Iran1978Tabas7.35
    2Loma Prieta1989Agnews State Hospital6.93
    3Loma Prieta1989Hollister - SAGO Vault6.93
    4Landers1992Barstow7.28
    5Cape Mendocino1992Loleta Fire Station7.01
    6Northridge-011994Newhall - Fire Sta6.69
    7Duzce_ Turkey1999Lamont 10607.14
    8Duzce_ Turkey1999Mudurnu7.14
    9Duzce_ Turkey1999Sakarya7.14
    10Hector Mine1999Twenty nine Palms7.13
    11Chi-Chi_ Taiwan1999CHY0067.62
    12Iwate_ Japan2008YMT0026.9
    13Iwate_ Japan2008YMT0176.9
    14Darfield_ New Zealand2010ADCS7
    15Darfield_ New Zealand2010Canterbury Aero Club7
    16Darfield_ New Zealand2010DORC7
    17El Mayor-Cucapah_Mexico2010El Centro Array #77.2
    18El Mayor-Cucapah_Mexico2010Sam W. Stewart7.2
    下载: 导出CSV

    表  5  桥梁构件各状态损伤指标

    Table  5.   Damage indicators of various states of bridge components

    损伤状态损伤指标
    桥墩曲率延性比支座相对位移/m
    轻微破坏10.2
    中等破坏20.4
    严重破坏40.6
    完全破坏70.8
    下载: 导出CSV

    表  6  桥梁纵桥向地震反应均值标准差及相关系数

    Table  6.   Standard deviation and correlation coefficient of seismic response of bridge components in X direction

    峰值地面加速度/g桥墩支座相关系数
    均值标准差均值标准差
    0.10.4405130.1610610.17690.16030.805469
    0.20.6701800.1996170.45970.29340.844633
    0.30.8551860.2115460.80550.45940.801741
    0.41.0064390.2254691.07520.56690.745297
    0.51.1293400.2458261.27380.62480.704433
    0.61.2228040.2312131.41090.63960.566617
    0.71.2876250.2521971.55010.67410.532768
    0.81.3671280.2813451.64030.67910.533813
    0.91.4700910.2850861.77260.66630.648648
    1.01.5427170.3453551.85160.60610.639064
    1.11.5961180.3954511.86820.54940.501254
    1.21.6044800.3570121.89610.59870.526271
    下载: 导出CSV
  • 陈安龙, 于雷, 郑云龙, 2000. 基于Rosenblatt变换的一阶可靠度分析方法. 大连理工大学学报, 40(6): 741−743. doi: 10.3321/j.issn:1000-8608.2000.06.028

    Chen A. L., Yu L., Zheng Y. L., 2000. First-order reliability method based on Rosenblatt transformation. Journal of Dalian University of Technology, 40(6): 741−743. (in Chinese) doi: 10.3321/j.issn:1000-8608.2000.06.028
    单德山, 苑洁艺, 董俊等, 2021. 桥梁构件三维地震易损性分析. 铁道学报, 43(9): 133−142. doi: 10.3969/j.issn.1001-8360.2021.09.018

    Shan D. S., Yuan J. Y., Dong J., et al., 2021. 3D seismic vulnerability analysis of bridge structural components. Journal of the China Railway Society, 43(9): 133−142. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.09.018
    董俊, 曾永平, 单德山, 2019. 高墩大跨铁路桥梁构件三维地震易损性分析. 哈尔滨工业大学学报, 51(3): 141−149. doi: 10.11918/j.issn.0367-6234.201712079

    Dong J., Zeng Y. P., Shan D. S., 2019. Three-dimensional seismic vulnerability analysis of long-span railway bridge components with high pier. Journal of Harbin Institute of Technology, 51(3): 141−149. (in Chinese) doi: 10.11918/j.issn.0367-6234.201712079
    苟小英, 2024. 考虑构件失效相关性的桥梁系统地震易损性研究. 重庆: 重庆三峡学院.
    赫传凯, 陈静, 2021. 空心高墩铁路桥梁地震易损性分析. 工程抗震与加固改造, 43(3): 32−39. doi: 10.16226/j.issn.1002-8412.2021.03.005

    He C. K., Chen J., 2021. Seismic fragility analysis of hollow high-pier railway-bridge. Earthquake Resistant Engineering and Retrofitting, 43(3): 32−39. (in Chinese) doi: 10.16226/j.issn.1002-8412.2021.03.005
    姬路遥, 2021. 考虑场地土效应及其不确定性的地震动记录选取研究. 哈尔滨: 哈尔滨工业大学.

    Ji L. Y. , 2021. Research on selection of ground motion records considering site soil effect and its uncertainty. Harbin: Harbin Institute of Technology. (in Chinese). (in Chinese)
    李佳璐, 任乐平, 胡伟, 2022. Nataf变换的桥梁系统多维地震易损性分析方法. 交通运输工程学报, 22(1): 82−92. doi: 10.19818/j.cnki.1671-1637.2022.01.006

    Li J. L., Ren L. P., Hu W., 2022. Multi-dimensional seismic fragility analysis method of bridge system based on Nataf transformation. Journal of Traffic and Transportation Engineering, 22(1): 82−92. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.006
    沈国煜, 袁万城, 庞于涛, 2014. 基于Nataf变换的桥梁结构地震易损性分析. 工程力学, 31(6): 93−100.

    Shen G. Y., Yuan W. C., Pang Y. T., 2014. Bridge seismic fragility analysis based on Nataf transformation. Engineering Mechanics, 31(6): 93−100. (in Chinese)
    申彦利, 魏博, 陈伟湖, 2020. 基于易损性的RC桥墩复合损伤指标适用性分析. 广西大学学报(自然科学版), 45(1): 46−52. doi: 10.13624/j.cnki.issn.1001-7445.2020.0046

    Shen Y. L., Wei B., Chen W. H., 2020. Applicability analysis of composite damage index of RC pier based on vulnerability. Journal of Guangxi University (Natural Science Edition), 45(1): 46−52. (in Chinese) doi: 10.13624/j.cnki.issn.1001-7445.2020.0046
    申彦利, 陈伟湖, 魏博, 2021. 基于振动台试验的桥墩复合损伤指标研究. 防灾减灾工程学报, 41(5): 987−1000. doi: 10.13409/j.cnki.jdpme.201906050

    Shen Y. L., Chen W. H., Wei B., 2021. Study on composite damage index of bridge pier based on shaking table test. Journal of Disaster Prevention and Mitigation Engineering, 41(5): 987−1000. (in Chinese) doi: 10.13409/j.cnki.jdpme.201906050
    张健, 师新虎, 刘志强, 2023. 大跨度整体式高墩桥梁地震易损性分析. 噪声与振动控制, 43(3): 212−219. doi: 10.3969/j.issn.1006-1355.2023.03.033

    Zhang J., Shi X. H., Liu Z. Q., 2023. Seismic vulnerability analysis of long-span integral high-pier bridges. Noise and Vibration Control, 43(3): 212−219. (in Chinese) doi: 10.3969/j.issn.1006-1355.2023.03.033
    郑凯锋, 陈力波, 庄卫林等, 2013. 基于概率性地震需求模型的桥梁易损性分析. 工程力学, 30(5): 165−171, 187. doi: 10.20000/j.1000-0844.20231019002

    Zheng K. F., Chen L. B., Zhuang W. L., et al., 2013. Bridge vulnerability analysis based on probabilistic seismic demand models. Engineering Mechanics, 30(5): 165−171,187. (in Chinese) doi: 10.20000/j.1000-0844.20231019002
    Baise L. G., Glaser S. D., Dreger D., 2003. Site response at Treasure and Yerba Buena Islands, California. Journal of Geotechnical and Geoenvironmental Engineering, 129(5): 415−426. doi: 10.1061/(ASCE)1090-0241(2003)129:6(415)
    Ceravolo R., Demarie G. V., Giordano L., et al., 2009. Problems in applying code-specified capacity design procedures to seismic design of tall piers. Engineering Structures, 31(8): 1811−1821. doi: 10.1016/j.engstruct.2009.02.042
    Chen X., Guan Z. G., Spencer Jr. B. F., et al., 2018. A simplified procedure for estimating nonlinear seismic demand of tall piers. Engineering Structures, 174: 778−791. doi: 10.1016/j.engstruct.2018.07.102
    Chen X., 2020. System fragility assessment of tall-pier bridges subjected to near-fault ground motions. Journal of Bridge Engineering, 25(3): 04019143. doi: 10.1061/(ASCE)BE.1943-5592.0001526
    Cimellaro G. P., Reinhorn A. M., Bruneau M., 2010. Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11): 3639−3649. doi: 10.1016/j.engstruct.2010.08.008
    Freudenthal A. M., 1956. Safety and the probability of structural failure. Transactions of the American Society of Civil Engineers, 121(1): 1337−1375. doi: 10.1061/TACEAT.0007306
    Hashash Y. M. A. , 2024. A nonlinear and equivalent linear seismic site response of 1-D soil columns. In: Hashash Y. M. A. , ed. , User Manual. Urbana: Board of Trustees of University of Illinois at Urbana-Champaign, 1−184.
    Hasofer A. M., 1974. Reliability index and failure probability. Journal of Structural Mechanics, 3(1): 25−27. doi: 10.1080/03601217408907254
    HAZUS99, F. E. M. A. , 1999. Earthquake loss estimation methodology: user’s manual. Washington: Federal Emergency Management Agency.
    Meng Q. L. , Yin X. , 2013. The study on 3D seismic pounding of the high-pier bridge under strong earthquake. In: International Efforts in Lifeline Earthquake Engineering. Chengdu: ASCE, 377−384.
    Mylonakis G., Gazetas G., 2000. Seismic soil-structure interaction: beneficial or detrimental?. Journal of Earthquake Engineering, 4(3): 277−301.
    Padgett J. E., Nielson B. G., DesRoches R., 2008. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering & Structural Dynamics, 37(5): 711−725.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 录用日期:  2025-03-26
  • 修回日期:  2025-02-26
  • 网络出版日期:  2025-12-14

目录

    /

    返回文章
    返回