Seismic Performance and Fragility of Reinforced Concrete Gravity Pier Considering Material Deterioration
-
摘要: 为系统研究材料性能劣化对钢筋混凝土桥墩抗震性能及地震易损性的影响,确保其合理的抗震设计,首先建立了钢筋混凝土铁路重力式桥墩有限元模型,分析了材料性能劣化对重力式桥墩抗震性能的影响规律;其次在验证了有限元建模方法正确性的基础上,对钢筋混凝土重力式桥墩进行了IDA时程分析,并对96条地震波作用下桥墩地震反应的平均值进行线性回归分析,通过建立易损性曲线得到桥梁在不同服役时间桥墩的地震破坏概率。结果表明,材料性能劣化将显著减小钢筋混凝土重力式桥墩的水平承载力、等效刚度和耗能能力,但是会增大桥墩的位移延性系数;随着桥梁服役时间和地震动强度的增大,桥墩的地震响应及地震破坏概率均呈增加趋势,尤其是严重破坏和完全破坏的概率增幅较大。因此,在对特殊复杂环境中钢筋混凝土桥梁进行抗震设计时,应充分考虑材料性能劣化对其抗震性能产生的不利影响。Abstract: ITo investigate the effects of material degradation on the seismic performance and vulnerability of reinforced concrete (RC) piers—and to support more rational seismic design—a finite element (FE) model of an RC pier was first developed. The impact of degradation in material properties on the seismic behavior of the pier was then analyzed. After verifying the accuracy of the FE modeling approach, an incremental dynamic analysis (IDA) was conducted using 96 ground motion records. A linear regression analysis of the average seismic response was performed, and fragility curves were developed to estimate the seismic failure probability of the pier at various service times. The results indicate that material deterioration significantly reduces the horizontal load-bearing capacity, equivalent stiffness, and energy dissipation capacity of the RC pier, while simultaneously increasing its deformation capacity. As the service life of the bridge and the intensity of ground motion increase, both the seismic response and the probability of seismic failure also increase—particularly the likelihood of severe or complete failure. These findings highlight the necessity of incorporating the adverse effects of material degradation into the seismic design of RC bridges, especially those located in complex or harsh environments.
-
表 1 混凝土本构参数
Table 1. Constitutive parameters of concrete
密度/(kg·m−3) 弹性模量/GPa 泊松比 抗压强度fc/MPa Ecc K fb0/fc0 膨胀角 黏性系数 2500 25.8 0.2 22.8 0.1 0.6667 1.16 30° 0.005 表 2 钢筋本构参数
Table 2. Constitutive parameters of reinforcing bars
密度/(kg·m−3) 弹性模/GPa 泊松比 屈服强度/MPa 极限强度/MPa 7800 210 0.3 335 510 表 3 钢筋力学参数
Table 3. Mechanical parameters of reinforced steel
服役时间/a 钢筋锈蚀率/% 钢筋抗拉强度/MPa 钢筋弹性模量/GPa 0 0 335.0 200.0 25 1.6 319.5 183.0 50 5.1 284.3 168.0 75 8.7 207.1 146.0 100 12.2 132.1 124.0 表 4 骨架曲线特性
Table 4. Skeleton curve characteristics
服役时间/a 正向加载 负向加载 屈服位移/mm 屈服荷载/kN 极限荷载/kN 位移延性系数 屈服位移/mm 屈服荷载/kN 极限荷载/kN 位移延性系数 0 7.25 39.47 43.41 6.88 7.73 38.52 43.47 6.46 25 7.26 37.78 41.20 6.88 7.61 37.07 41.19 6.56 50 6.81 34.29 37.57 7.33 7.29 33.73 37.56 6.85 75 6.15 27.82 30.26 8.12 6.55 27.16 30.34 7.63 100 5.77 20.75 22.94 8.65 5.99 20.19 22.96 8.33 表 5 桥墩的各级损伤与延性判别准则
Table 5. Criteria for determining damage and ductility of bridge piers at all levels
损伤状态 描述 判别准则 无损伤 无钢筋屈服,混凝土仅产生细小的裂缝。 $0 < \mu < {\mu _{\text{cy}1}}$ 轻微破坏 第一根钢筋理论屈服,混凝土出现明显裂缝。 ${\mu _{\text{cy}1}} < \mu < {\mu _{\text{cy}}}$ 中等破坏 局部塑性铰开始形成,出现非线性变形,保护层混凝土开始剥落,可见裂缝开展。 ${\mu _{\text{cy}}} < \mu < {\mu _{\text{c}4}}$ 严重破坏 塑性铰完全形成,形成较大宽度的裂缝,整个塑性铰区混凝土剥落。 $ \mu_{\text{c}4} < \mu < \mu_{\text{c},\max} $ 完全破坏 强度退化,主筋屈曲,箍筋断裂,核心混凝土压碎。 $ \mu > \mu_{\text{c},\max} $ 注:${\mu _{\text{cy}1}}$为首次屈服位移延性比;${\mu _{\text{cy}}}$为等效屈服位移延性比;${\mu _{\text{c}4}}$为混凝土应变${\varepsilon _{\mathrm{c}}}$=0.004 时的位移延性比;$ \mu_{\text{c},\max} $为最大位移延性比。 表 6 各破坏状态的损伤指标
Table 6. Damage indicators for each damage state
破坏状态 初始服役 服役25年 服役50年 服役75年 服役100年 轻微破坏 1<$\mu $<1.36 1<$\mu $<1.36 1<$\mu $<1.36 1<$\mu $<1.33 1<$\mu $<1.39 中等破坏 1.36<$\mu $<4.40 1.36<$\mu $<4.18 1.36<$\mu $<4.12 1.33<$\mu $<4.56 1.39<$\mu $<5.38 严重破坏 4.40<$\mu $<7.40 4.18<$\mu $<7.18 4.12<$\mu $<7.12 4.56<$\mu $<7.56 5.38<$\mu $<8.38 完全破坏 $\mu $>7.40 $\mu $>7.18 $\mu $>7.12 $\mu $>7.56 $\mu $>8.38 表 7 线性回归参数
Table 7. Linear regression parameters
服役时间 拟合参数 a b 初始服役 1.8336 2.2862 服役25年 1.8362 2.3481 服役50年 1.8471 2.4126 服役75年 1.9021 2.5981 服役100年 1.9502 2.8256 -
丁娅,秦晓川,周莹等,2020. 氯离子侵蚀下钢筋混凝土结构耐久性寿命预测−−经典模型对比与分析. 混凝土,(12):15−20. doi: 10.3969/j.issn.1002-3550.2020.12.004Ding Y., Qin X. C., Zhou Y., et al., 2020. Durability life prediction of reinforced concrete structures under chloride ingress: a review of classic models. Concrete, (12): 15−20. (in Chinese) doi: 10.3969/j.issn.1002-3550.2020.12.004 段安,2009. 受冻融混凝土本构关系研究和冻融过程数值模拟. 北京:清华大学.Duan A., 2009. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process. Beijing:Tsinghua University. (in Chinese) 傅沛瑶,徐略勤,龚恋等,2020. 材料性能劣化对刚构桥地震易损性的影响分析. 防灾减灾工程学报,40(5):779−788,810.Fu P. Y., Xu L. Q., Gong L., et al., 2020. Effect of material deterioration on the seismic fragility of rigid frame bridge. Journal of Disaster Prevention and Mitigation Engineering, 40(5): 779−788,810. (in Chinese) 高能,2017. 大跨连续梁桥地震易损性分析研究. 成都:西南交通大学.Gao N., 2017. Seismic vulnerability analysis of long-span continuous beam bridge. Chengdu:Southwest Jiaotong University. (in Chinese) 贡金鑫,仲伟秋,赵国藩,2004. 受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究. 建筑结构学报,25(5):92−97,104.Gong J. X., Zhong W. Q., Zhao G. F., 2004. Experimental study on low-cycle behavior of corroded reinforced concrete member under eccentric compression. Journal of Building Structures, 25(5): 92−97,104. (in Chinese) 黄忠凯,张冬梅,2021. 地下结构地震易损性研究进展. 同济大学学报(自然科学版),49(1):49−59,115.Huang Z. K., Zhang D. M., 2021. Recent advance in seismic fragility research of underground structures. Journal of Tongji University (Natural Science), 49(1): 49−59,115. (in Chinese) 李喜梅,付阿雄,2021. 考虑材料劣化钢筋混凝土梁桥抗震性能分析. 兰州理工大学学报,47(3):139−145.Li X. M., Fu A. X., 2021. Seismic performance analysis of reinforced concrete beam bridges considering material deterioration. Journal of Lanzhou University of Technology, 47(3): 139−145. (in Chinese) 鲁锦华,陈兴冲,丁明波等,2021. 不同配筋率下铁路重力式桥墩抗震性能试验研究. 中国铁道科学,42(3):47−54.Lu J. H., Chen X. C., Ding M. B., et al., 2021. Experimental study on seismic performance of railway gravity bridge piers with different reinforcement ratios. China Railway Science, 42(3): 47−54. (in Chinese) 卢木,1997. 混凝土耐久性研究现状和研究方向. 工业建筑,27(5):1−6,52. doi: 10.3321/j.issn:1000-8993.1997.05.001Lu M., 1997. Recent study and research directions of concrete durability. Industrial Construction, 27(5): 1−6,52. (in Chinese) doi: 10.3321/j.issn:1000-8993.1997.05.001 马玉宏,邱洁鹏,刘用奇等,2021. 基于高阻尼橡胶支座及墩柱劣化的近海隔震桥梁地震响应分析. 长安大学学报(自然科学版),41(2):23−33.Ma Y. H., Qiu J. P., Liu Y. Q., et al., 2021. Seismic response analysis of offshore isolated bridge based on performance degradation of high damping rubber bearing and pier. Journal of Chang’an University (Natural Science Edition), 41(2): 23−33. (in Chinese) 孙才志,赵雷,王菲,2014. 大跨度多塔斜拉桥随机地震响应分析. 地震工程学报,36(4):911−918.Sun C. Z., Zhao L., Wang F., 2014. Stochastic seismic responses of a large-span multi-tower cable-stayed bridge. China Earthquake Engineering Journal, 36(4): 911−918. (in Chinese) 孙丛涛,2011. 基于氯离子侵蚀的混凝土耐久性与寿命预测研究. 西安:西安建筑科技大学.Sun C. T., 2011. Study on concrete durability and service life prediction based on chloride corrosion. Xi’an:Xi’an University of Architecture & Technology. (in Chinese) 吴庆,袁迎曙,2008. 锈蚀钢筋力学性能退化规律试验研究. 土木工程学报,41(12):42−47. doi: 10.3321/j.issn:1000-131X.2008.12.007Wu Q., Yuan Y. S., 2008. Experimental study on the deterioration of mechanical properties of corroded steel bars. China Civil Engineering Journal, 41(12): 42−47. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.12.007 许家琳,张于晔,左晓宝,2024. 考虑氯离子侵蚀的预应力节段桥墩时变地震易损性分析. 工程力学,41(S1):74−82.Xu J. L., Zhang Y. Y., Zuo X. B., 2024. Analysis of time-varying seismic vulnerability of prestressed segment pier considering chloride ion corrosion. Engineering Mechanics, 41(S1): 74−82. (in Chinese) 徐略勤,鲁小罗,周建庭,2020. 空心板桥考虑服役劣化的地震损伤破坏模式研究. 振动与冲击,39(16):222−230.Xu L. Q., Lu X. L., Zhou J. T., 2020. A study on damage and failure modes of a voided slab bridge under earthquake excitations considering structural deterioratio. Journal of Vibration and Shock, 39(16): 222−230. (in Chinese) 于生生,张熙胤,陈兴冲等,2021. 场地地震反应分析研究现状及展望. 防灾减灾工程学报,41(1):181−192.Yu S. S., Zhang X. Y., Chen X. C., et al., 2021. Present research situation and prospect on analysis of site seismic response. Journal of Disaster Prevention and Mitigation Engineering, 41(1): 181−192. (in Chinese) 于生生,张熙胤,王万平等,2022. 考虑土体季节性冻融效应的铁路桥梁桩基础抗震性能及影响因素分析. 铁道学报,44(5):141−148.Yu S. S., Zhang X. Y., Wang W. P., et al., 2022. Seismic performance and influencing factors of railway bridge pile foundation considering seasonal freezing and thawing effect of soil. Journal of the China Railway Society, 44(5): 141−148. (in Chinese) 张菊辉,2006. 基于数值模拟的规则梁桥墩柱的地震易损性分析. 上海:同济大学.Zhang J. H., 2006. Study on seismic vulnerability analysis of normal beam bridge piers based on numerical simulation. Shanghai:Tongji University. (in Chinese) 张熙胤,于生生,王万平等,2022. 多年冻土区铁路桥梁高承台桩基础地震破坏机理及易损性研究. 土木工程学报,55(7):77−89.Zhang X. Y., Yu S. S., Wang W. P., et al., 2022. Seismic failure mechanism and fragility of pile foundation with elevated cap of railway bridge in permafrost region. China Civil Engineering Journal, 55(7): 77−89. (in Chinese) 张艺欣,郑山锁,裴培等,2019. 钢筋混凝土柱冻融损伤模型研究. 工程力学,36(2):78−86. doi: 10.6052/j.issn.1000-4750.2017.11.0791Zhang Y. X., Zheng S. S., Pei P., et al., 2019. Research on the modelling method of reinforced concrete column subjected to freeze-thaw damage. Engineering Mechanics, 36(2): 78−86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0791 郑辉,2009. 自然环境下混凝土氯离子侵蚀的随机性及寿命预测. 杭州:浙江工业大学.Zheng H., 2009. Randomness of chloride ion erosion in concrete and service life prediction under natural environment. Hangzhou:Zhejiang University of Technology. (in Chinese) Hanjari K. Z., Kettil P., Lundgren K., 2011. Analysis of mechanical behavior of corroded reinforced concrete structures. ACI Structural Journal, 108(5): 532−541. Hwang H., Jernigan J. B., Lin Y. W., 2000. Evaluation of seismic damage to Memphis bridges and highway systems. Journal of Bridge Engineering, 5(4): 322−330. doi: 10.1061/(ASCE)1084-0702(2000)5:4(322) Palsson R., Mirza M. S., 2002. Mechanical response of corroded steel reinforcement of abandoned concrete bridge. ACI Structural Journal, 99(2): 157−162. -