• ISSN 1673-5722
  • CN 11-5429/P

斜坡场地中桩基框架结构动力相互作用研究

龙慧 刘璐瑶 秦悠 彭帅 谢镇 李健

龙慧,刘璐瑶,秦悠,彭帅,谢镇,李健,2025. 斜坡场地中桩基框架结构动力相互作用研究. 震灾防御技术,20(4):1−10. doi:10.11899/zzfy20240223. doi: 10.11899/zzfy20240223
引用本文: 龙慧,刘璐瑶,秦悠,彭帅,谢镇,李健,2025. 斜坡场地中桩基框架结构动力相互作用研究. 震灾防御技术,20(4):1−10. doi:10.11899/zzfy20240223. doi: 10.11899/zzfy20240223
Long Hui, Liu Luyao, Qin You, Peng Shuai, Xie Zhen, Li Jian. Study of Dynamic Interaction of Pile Foundation Frame Structures in Sloping Sites[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240223
Citation: Long Hui, Liu Luyao, Qin You, Peng Shuai, Xie Zhen, Li Jian. Study of Dynamic Interaction of Pile Foundation Frame Structures in Sloping Sites[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240223

斜坡场地中桩基框架结构动力相互作用研究

doi: 10.11899/zzfy20240223
基金项目: 湖南省教育科研项目优秀青年(21 B0420);湖南省自然科学基金项目(2024 JJ7441);湖南省自然资源厅科研项目(20230144 DZ)
详细信息
    作者简介:

    龙慧,男,生于1982年。副教授。主要从事岩土地震工程领域方面的研究。E-mail:28748388@qq.com

    通讯作者:

    秦悠 ,男,生于1994年。博士。主要从事地震工程相关专业的研究。E-mail:qinyou94@163.com

Study of Dynamic Interaction of Pile Foundation Frame Structures in Sloping Sites

  • 摘要: 为研究缓倾斜坡场地中桩基框架结构间结构-土-结构动力相互作用特性,使用ABAQUS软件建立系列结构-土-结构二维有限元分析模型,考虑土-结构非线性特性,设置0°~15°等6种坡度条件,对缓倾斜坡场地中的建筑开展非线性有限元数值分析。结果表明:1)相较于相邻建筑物,斜坡坡角对结构间峰值加速度的影响更大;2)斜坡在放大坡上结构地震动响应的同时却缩小了坡下结构的地震动响应;3)相邻建筑物对基础各单桩顶的峰值剪力响应有较大影响,而对桩顶总剪力的影响不大,在水平或缓倾斜坡场地中SSSI效应均导致了结构桩顶剪力重分布现象。本研究为实际工程中普遍存在的斜坡场地下结构的抗震设计提供理论参考。
  • 图  1  结构模型信息(单位:米)

    Figure  1.  Structural model information (unit: m)

    图  2  输入地震动时程曲线及反应谱

    Figure  2.  Input ground motion time history curve and acceleration response spectrum

    图  3  模型网格划分

    Figure  3.  Model meshing

    图  4  坡度对斜坡场地结构峰值加速度的影响系数βa

    Figure  4.  Influence coefficient(βa)of slope on peak acceleration of structure in slope site

    图  5  坡度对斜坡场地结构峰值剪力影响系数βv

    Figure  5.  Influence coefficient(βv)of slope on peak shear of structure in slope site

    图  6  总剪力幅值影响系数

    Figure  6.  Influence coefficient of total shear amplitude

    表  1  场地土模型信息

    Table  1.   Site soil model information

    土体名称厚度/m密度ρ/(t·m−3剪切波速Vs/(m·s−1内摩擦角φ/(o动态泊松比μ
    素填土1.51.8813080.49
    粉质黏土①4.51.92218130.49
    粉质黏土②81.97220170.49
    细砂10.51.98400250.49
    圆砾8.52.15478350.49
    下载: 导出CSV

    表  2  工况布置

    Table  2.   Working condition arrangement

    序号斜坡坡度相邻建筑物地震波类型
    1(0°,A)(0°,U)(0°,D)DF 波
    CS 波
    SA 波
    2(3°,A)(3°,U)(3°,D)
    3(6°,A)(6°,U)(7°,D)
    4(9°,A)(9°,U)(9°,D)
    5(12°,A)(12°,U)(12°,D)
    6(15°,A)(15°,U)(15°,D)
    下载: 导出CSV

    表  3  相邻建筑物对坡上结构峰值加速度影响系数JAU

    Table  3.   Influence coefficient(JAU)of adjacent buildings on peak acceleration of structure located up the slope

    位置DF /%CS /%SA /%
    12°15°12°15°12°15°
    顶板−1.672−0.888−1.003−0.165−0.785−0.218−0.8490.3390.1910.226−0.479−0.268−0.7650.017−0.349−0.7950.486−1.229
    F6−0.991−1.003−0.667−0.119−0.467−0.144−1.4480.4540.6820.428−0.306−0.003−0.871−0.305−0.794−0.719−0.565−0.520
    F5−0.791−0.820−0.385−0.649−0.901−0.236−0.031−0.638−0.9750.380−0.1131.051−0.372−3.889−1.2120.541−1.274−1.146
    F40.6610.9650.6661.4571.502−0.394−0.890−0.822−1.193−1.016−0.5070.813−0.011−0.1180.075−0.7890.484−0.640
    F30.2750.284−0.3620.8261.0480.630−2.490−0.999−0.971−2.161−0.8101.417−0.956−0.2830.411−0.313−1.487−0.017
    F2−3.330−0.703−1.717−1.740−0.6860.882−3.508−0.919−1.841−1.227−1.886−1.507−1.161−0.8881.8711.196−1.6770.839
    F1−5.233−1.2002.238−1.0542.682−5.450−2.663−0.690−2.674−2.915−4.082−4.143−0.2842.8901.6991.0942.3024.850
    下载: 导出CSV

    表  4  相邻建筑物对坡下结构峰值加速度影响系数JAD

    Table  4.   Influence coefficient(JAD) of adjacent buildings on peak acceleration of structure located down the slope

    位置DF /%CS /%SA /%
    12°15°12°15°12°15°
    顶板−1.796−0.380−0.409−0.3960.3290.1930.3190.9111.2021.0301.0512.468−0.6010.908−1.926−0.9532.0003.600
    F6−0.693−0.485−0.624−0.217−0.066−0.019−0.6870.6641.5890.1141.1570.807−0.879−0.996−3.260−1.835−1.483−0.632
    F5−0.747−0.106−1.1020.1170.0630.2680.778−0.690−0.546−0.1810.034−0.833−0.2911.919−1.005−0.995−2.117−3.170
    F41.059−0.6240.5430.7441.8943.208−0.321−0.147−0.6240.3080.564−0.1050.344−0.490−0.6640.258−0.1160.991
    F30.212−0.8270.4670.135−0.455−0.519−1.431−0.845−0.0060.749−0.0820.7680.312−0.690−2.966−0.997−1.524−0.294
    F2−3.451−4.506−2.373−3.422−4.963−6.466−3.148−2.856−1.912−2.713−3.202−2.411−0.863−0.594−2.1892.825−1.4160.014
    F1−0.321−2.736−0.0071.3853.8603.309−2.087−2.494−2.889−0.173−1.428−2.522−0.457−0.219−2.3582.8800.8753.841
    下载: 导出CSV

    表  5  相邻建筑物对坡上结构峰值剪力影响系数JVU

    Table  5.   Influence coefficient(JVU)of adjacent buildings on peak shear force of structure located up the slope

    位置DF /%CS /%SA /%
    12°15°12°15°12°15°
    Z19.293−9.8930.187−3.022−2.480−0.52213.372−11.191−12.749−6.18814.2201.069−15.4426.5580.7361.1273.5661.940
    Z215.357−14.251−18.560−5.993−15.25911.4228.316−5.002−14.643−9.7150.17822.125−3.6642.100−5.0381.1804.789−2.649
    Z3−1.5155.2883.729−2.24916.1910.1643.36218.227−16.165−11.0745.764−6.9207.1800.7873.6292.443−0.497−0.117
    Z4−8.92014.4726.384−1.509−1.557−5.4506.595−0.8823.087−7.28913.1803.2328.3431.1134.630−1.605−0.4911.511
    Total−8.0513.285−9.6652.263−5.4322.7412.5170.615−0.588−1.309−2.912−12.041−0.0681.2670.2990.5793.0902.295
    下载: 导出CSV

    表  6  相邻建筑物对坡下结构峰值剪力影响系数JVD

    Table  6.   Influence coefficient(JVD)of adjacent buildings on peak shear force of structure located down the slope

    位置DF /%CS /%SA /%
    12°15°12°15°12°15°
    Z114.0106.4487.42112.248−8.277−4.301−3.768−11.889−13.9586.236−2.0250.8834.0596.24916.87315.06218.175−7.537
    Z21.710−3.7655.2120.9094.8312.2466.22627.5480.99320.724−3.814−0.485−1.0705.2078.5981.4184.2595.101
    Z3−0.3950.0985.4561.8912.744−1.641−2.674−6.232−14.0577.6133.320−10.9182.906−3.3450.6030.5472.4280.398
    Z4−0.117−0.2781.881−1.450−7.489−1.400−1.506−15.9162.7400.0865.069−7.27618.6564.0245.77713.110−0.415−2.774
    Total0.590−8.5562.509−1.826−1.540−0.6190.2726.385−0.244−0.62412.0045.9313.469−4.8613.8053.5040.6392.739
    下载: 导出CSV
  • 庄海洋, 陈国兴, 2009. 对土体动力黏塑性记忆型嵌套面模型的改进. 岩土力学, 30(1): 118−122. doi: 10.3969/j.issn.1000-7598.2009.01.019

    Zhuang H. Y., Chen G. X., 2009. Improvement of dynamic viscoplastic memorial nested yield surface model of soil. Rock and Soil Mechanics, 30(1): 118−122. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.01.019
    Alitalesh M., Shahnazari H., Baziar M. H., 2018. Parametric study on seismic topography–soil–structure interaction; topographic effect. Geotechnical and Geological Engineering, 36(4): 2649−2666. doi: 10.1007/s10706-018-0489-8
    Ba Z. N., Pei Y. F., Yu F. X., et al., 2024. A semi-analytical approach for site-city interaction under oblique incident SH waves. Structures, 68: 107057 doi: 10.1016/j.istruc.2024.107057
    Bararpour M., Janalizade A., Tavakoli H. R., 2016. The effect of 2D slope and valley on seismic site response. Arabian Journal of Geosciences, 9(2): 93. doi: 10.1007/s12517-015-2039-5
    Brennan A. J., Madabhushi S. P. G., 2009. Amplification of seismic accelerations at slope crests. Canadian Geotechnical Journal, 46(5): 585−594. doi: 10.1139/T09-006
    Chen S. P., Zhai C. H., Liu Q. F., et al., 2023. Assessing the influence of nonlinear soil behaviour on site-city interaction. Soil Dynamics and Earthquake Engineering, 171: 107973. doi: 10.1016/j.soildyn.2023.107973
    Erfani A., Ghanbari A., Massumi A., 2021. Seismic behaviour of structures adjacent to slope by considering SSI effects in cemented soil mediums. International Journal of Geotechnical Engineering, 15(1): 2−14. doi: 10.1080/19386362.2019.1681817
    Fatahi B., Huang B. H., Yeganeh N., et al., 2020. Three-dimensional simulation of seismic slope–foundation–structure interaction for buildings near shallow slopes. International Journal of Geomechanics, 20(1): 04019140. doi: 10.1061/(ASCE)GM.1943-5622.0001529
    Lee J., Fenves G. L., 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8): 892−900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    Long H., Wang Z. C., Zhang C. S., et al., 2021. Nonlinear study on the structure-soil-structure interaction of seismic response among high-rise buildings. Engineering Structures, 242: 112550. doi: 10.1016/j.engstruct.2021.112550
    Madany M., Guo P. J., 2021. Structure–soil–structure interaction analysis for lateral seismic earth pressure of deeply buried structure in layered ground. International Journal of Geomechanics, 21(11): 04021217. doi: 10.1061/(ASCE)GM.1943-5622.0002189
    Shabani M. J., Shamsi M., Ghanbari A., 2021a. Dynamic response of three-dimensional midrise buildings adjacent to slope under seismic excitation in the direction perpendicular to the slope. International Journal of Geomechanics, 21(11): 04021204. doi: 10.1061/(ASCE)GM.1943-5622.0002158
    Shabani M. J., Shamsi M., Ghanbari A., 2021b. Seismic response of RC moment frame including topography–soil–structure interaction. Practice Periodical on Structural Design and Construction, 26(4): 04021046. doi: 10.1061/(ASCE)SC.1943-5576.0000625
    Shamsi M., Shabani M. J., Zakerinejad M., et al., 2022. Slope topographic effects on the nonlinear seismic behavior of groups of similar buildings. Earthquake Engineering & Structural Dynamics, 51(10): 2292−2314.
    Sucasaca J., Sáez E., 2021. Topographical and structure-soil-structure interaction effects on dynamic behavior of shear-wall buildings on coastal scarp. Engineering Structures, 247: 113113. doi: 10.1016/j.engstruct.2021.113113
    Wang H. F., Lou M. L., Chen X., et al., 2013. Structure–soil–structure interaction between underground structure and ground structure. Soil Dynamics and Earthquake Engineering, 54: 31−38. doi: 10.1016/j.soildyn.2013.07.015
    Yamamoto Y., Baker J. W., 2013. Stochastic model for earthquake ground motion using wavelet packets. Bulletin of the Seismological Society of America, 103(6): 3044−3056. doi: 10.1785/0120120312
    Yan L., Long H., Liu S. W., et al., 2020. Analysis on influence of adjacent buildings on mutual seismic acceleration response. E3S Web of Conferences, 165: 04055. doi: 10.1051/e3sconf/202016504055
    Zhang N., Gao Y. F., Yang J., et al., 2015. An analytical solution to the scattering of cylindrical SH waves by a partially filled semi-circular alluvial valley: near-source site effects. Earthquake Engineering and Engineering Vibration, 14(2): 189−201. doi: 10.1007/s11803-015-0016-3
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-18
  • 录用日期:  2024-12-31
  • 修回日期:  2024-12-06
  • 网络出版日期:  2026-01-13

目录

    /

    返回文章
    返回