• ISSN 1673-5722
  • CN 11-5429/P

设置钢管灌浆阻尼器的RSC双层排架墩抗震性能分析

王严信 孙治国 李小军 王东升

王严信,孙治国,李小军,王东升,2024. 设置钢管灌浆阻尼器的RSC双层排架墩抗震性能分析. 震灾防御技术,19(2):355−362. doi:10.11899/zzfy20240215. doi: 10.11899/zzfy20240215
引用本文: 王严信,孙治国,李小军,王东升,2024. 设置钢管灌浆阻尼器的RSC双层排架墩抗震性能分析. 震灾防御技术,19(2):355−362. doi:10.11899/zzfy20240215. doi: 10.11899/zzfy20240215
Wang Yanxin, Sun Zhiguo, Li Xiaojun, Wang Dongsheng. Seismic Performance Analysis of RSC Double-deck Bridge Bent with Steel-tube Grout Damper[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 355-362. doi: 10.11899/zzfy20240215
Citation: Wang Yanxin, Sun Zhiguo, Li Xiaojun, Wang Dongsheng. Seismic Performance Analysis of RSC Double-deck Bridge Bent with Steel-tube Grout Damper[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 355-362. doi: 10.11899/zzfy20240215

设置钢管灌浆阻尼器的RSC双层排架墩抗震性能分析

doi: 10.11899/zzfy20240215
基金项目: 国家自然科学基金(51978167);河北省重点研发计划(21375405D);中央高校基本科研业务费研究生科技创新基金(ZY20220314)
详细信息
    作者简介:

    王严信,男,生于1998年。硕士研究生。主要从事桥梁抗震方面的研究。E-mail:Wang_Yanxin2022@163.com

    通讯作者:

    孙治国,男,生于1980年。博士,教授。主要从事桥梁抗震方面的研究。E-mail:sunzhiguo@cidp.edu.cn

  • 中图分类号: TU352.1+1;U443.22

Seismic Performance Analysis of RSC Double-deck Bridge Bent with Steel-tube Grout Damper

  • 摘要: 为实现双层桥梁排架墩地震损伤控制设计,提出上层排架采用摇摆-自复位(Rocking Self-Centering,RSC)体系、下层排架不摇摆的双层桥梁排架墩设计思路,并采用钢管灌浆阻尼器(Steel-tube Grout Damper,SGD)提升摇摆接缝处的耗能能力。基于OpenSees数值分析平台分别建立了SGD和外置SGD的RSC双层排架墩抗震数值分析模型,结合试验结果验证了SGD和RSC排架墩建模方法的准确性。选取7条近断层地震动记录,基于增量动力分析(Incremental Dynamic Analysis,IDA)手段,研究外置SGD的RSC双层排架墩的地震反应。研究结果表明,当PGA为0.1 g时,SGD开始屈服耗能;当PGA为0.4 g时,SGD最大变形为名义极限变形的53.44%,无粘结预应力筋最大应力为名义屈服强度的59.60%;当PGA为0.8 g时,SGD接近拉断,预应力筋最大应力为名义屈服强度的84.78%;与耗能角钢相比,SGD变形及耗能能力更强,在强震作用下更不易发生拉断破坏。
  • 图  1  设置SGD的RSC双层排架桥墩设计(单位:毫米)

    Figure  1.  Design details of the RSC double-deck bridge bent with SGD(Unit: mm)

    图  2  设置SGD的RSC双层排架墩抗震数值分析模型

    Figure  2.  Numerical analysis model of the RSC double-deck bent with SGD

    图  3  加载模式

    Figure  3.  Loading mode

    图  4  试验与数值结果对比

    Figure  4.  Comparison of experimental and numerical results

    图  5  SGD与RSC双层排架墩连接方式

    Figure  5.  Connection type between the SGD and the RSC double-column bent

    图  6  耗能构件单位面积滞回曲线对比

    Figure  6.  Comparison of hysteresis curves per unit area of energy consuming components

    图  7  所选择近断层地震动放大系数谱

    Figure  7.  Amplification factor spectrum for selected near-fault ground motions

    图  8  PGA为0.4 g时SGD力-变形曲线

    Figure  8.  SGD force-deflection curve at 0.4 g for PGA

    表  1  选取的地震动记录

    Table  1.   Selected earthquake records

    编号记录名称断层距/kmPGA/g
    NO. 1TCU052-NS1.840.49
    NO. 2TCU065-EW2.490.79
    NO. 3TCU067-EW1.110.50
    NO. 4TCU068-EW3.010.51
    NO. 5TCU082-EW4.470.23
    NO. 6TCU102-EW1.190.30
    NO. 7TCU120-EW9.870.23
    下载: 导出CSV

    表  2  设置SGD的RSC双层排架桥墩地震响应平均值

    Table  2.   Average seismic response of the RSC double-deck bridge bents with SGD

    结构响应PGA/g
    0.10.20.40.8
    顶层层间位移角/%0.210.542.264.07
    底层层间位移角/%0.030.060.120.26
    SGD最大变形/mm0.502.2015.7026.53
    预应力筋最大应力/MPa589.86630.32886.171260.61
    下载: 导出CSV
  • 蔡小宁,孟少平,孙巍巍等,2012. 顶底角钢连接半刚性钢结构抗震性能数值分析. 工程力学,29(7):124−129,146. doi: 10.6052/j.issn.1000-4750.2010.09.0667

    Cai X. N., Meng S. P., Sun W. W., et al., 2012. Numerical analysis for seismic behavior of semi-rigid steel beam-to-column connection with top-and-seat angles. Engineering Mechanics, 29(7): 124−129,146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.09.0667
    石岩,钟正午,秦洪果等,2021. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法. 工程力学,38(8):166−177,203. doi: 10.6052/j.issn.1000-4750.2020.08.0575

    Shi Y., Zhong Z. W., Qin H. G., et al., 2021. Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with LEAD-extrusion dampers. Engineering Mechanics, 38(8): 166−177,203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0575
    孙治国,华承俊,靳建楠等,2016. 基于OpenSees的钢筋混凝土桥墩抗震数值分析模型. 世界地震工程,32(1):266−276.

    Sun Z. G., Hua C. J., Jin J. N., et al., 2016. Numerical seismic analysis model for reinforced concrete bridge piers based on OpenSees. World Earthquake Engineering, 32(1): 266−276. (in Chinese)
    孙治国,谷明洋,司炳君等,2017. 外置角钢摇摆-自复位双柱墩抗震性能分析. 中国公路学报,30(12):40−49. doi: 10.3969/j.issn.1001-7372.2017.12.005

    Sun Z. G., Gu M. Y., Si B. J., et al., 2017. Seismic behavior analyses of rocking self-centering double column bridge bents using external angles. China Journal of Highway and Transport, 30(12): 40−49. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.12.005
    孙治国,赵泰儀,王东升等,2020. 基于RSC体系的双层桥梁排架墩地震损伤控制设计. 中国公路学报,33(3):97−106. doi: 10.3969/j.issn.1001-7372.2020.03.009

    Sun Z. G., Zhao T. Y., Wang D. S., et al., 2020. Seismic damage control design for double-deck bridge bents based on rocking self-centering system. China Journal of Highway and Transport, 33(3): 97−106. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.009
    孙治国,赵泰儀,韩强等,2021. 摇摆-自复位双层桥梁排架墩抗震体系研究. 振动工程学报,34(3):472−480.

    Sun Z. G., Zhao T. Y., Han Q., et al., 2021. Seismic resistance system for rocking self-centering double deck bridge bents. Journal of Vibration Engineering, 34(3): 472−480. (in Chinese)
    张洁,管仲国,李建中,2017. 双层高架桥梁框架墩抗震性能试验研究. 工程力学,34(2):120−128.

    Zhang J., Guan Z. G., Li J. Z., 2017. Experimental research on seismic peformance of frame piers of double-deck viaducts. Engineering Mechanics, 34(2): 120−128. (in Chinese)
    庄卫林,刘振宇,蒋劲松,2009. 汶川大地震公路桥梁震害分析及对策. 岩石力学与工程学报,28(7):1377−1387. doi: 10.3321/j.issn:1000-6915.2009.07.011

    Zhuang W. L., Liu Z. Y., Jiang J. S., 2009. Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures. Chinese Journal of Rock Mechanics and Engineering, 28(7): 1377−1387. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.07.011
    Bedriñana L. A., Tani M., Nishiyama M., 2021. Deformation and cyclic buckling capacity of external replaceable hysteretic dampers for unbonded post-tensioned precast concrete walls. Engineering Structures, 235: 112045. doi: 10.1016/j.engstruct.2021.112045
    Fujino Y., Hashimoto S., Abe M., 2005. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. I: residual inclination of reinforced concrete piers. Journal of Bridge Engineering, 10(1): 45−53.
    Garlock M. M., Ricles J. M., Sause R., 2003. Cyclic load tests and analysis of bolted top-and-seat angle connections. Journal of Structural Engineering, 129(12): 1615−1625. doi: 10.1061/(ASCE)0733-9445(2003)129:12(1615)
    Jia Z. L., Wen J. N., Han Q., et al., 2021. Seismic response of a Reduced-scale continuous girder bridge with rocking Columns: experiment and analysis. Engineering Structures, 248: 113265. doi: 10.1016/j.engstruct.2021.113265
    Kunnath S. K., Gross J. L., 1995. Inelastic response of the cypress viaduct to the Loma Prieta earthquake. Engineering Structures, 17(7): 485−493. doi: 10.1016/0141-0296(95)00103-E
    Marin A., Spacone E., 2006. Analysis of reinforced concrete elements including shear effects. ACI Structural Journal, 103(5): 645−655.
    Marriott D., Pampanin S., Palermo A., 2009. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters. Earthquake Engineering & Structural Dynamics, 38(3): 331−354.
    Marriott D., Pampanin S., Palermo A., 2011. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters. Earthquake Engineering & Structural Dynamics, 40(15): 1723−1741.
    Wang B. F., Han Q., Jia Z. L., et al., 2021. Seismic response analysis of the precast double-deck rocking frame bridge pier system. Soil Dynamics and Earthquake Engineering, 146: 106745. doi: 10.1016/j.soildyn.2021.106745
    Yang S., Guan D. Z., Jia L. J., et al., 2019. Local bulging analysis of a restraint tube in a new buckling-restrained brace. Journal of Constructional Steel Research, 161: 98−113. doi: 10.1016/j.jcsr.2019.06.014
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  10
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回