• ISSN 1673-5722
  • CN 11-5429/P

杭州湾衢山岛屿地应力测量研究及其地壳动力学意义

钟威 蒋再辉 康学聪 刘冀昆 付平

钟威,蒋再辉,康学聪,刘冀昆,付平,2025. 杭州湾衢山岛屿地应力测量研究及其地壳动力学意义. 震灾防御技术,20(4):1−10. doi:10.11899/zzfy20240184. doi: 10.11899/zzfy20240184
引用本文: 钟威,蒋再辉,康学聪,刘冀昆,付平,2025. 杭州湾衢山岛屿地应力测量研究及其地壳动力学意义. 震灾防御技术,20(4):1−10. doi:10.11899/zzfy20240184. doi: 10.11899/zzfy20240184
Zhong Wei, Jiang Zaihui, Kang Xuecong, Liu Jikun, Fu Ping. In-situ Stress Measurement of Qushan Island in Hangzhou Bay and Its Crustal Dynamic Significance[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240184
Citation: Zhong Wei, Jiang Zaihui, Kang Xuecong, Liu Jikun, Fu Ping. In-situ Stress Measurement of Qushan Island in Hangzhou Bay and Its Crustal Dynamic Significance[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240184

杭州湾衢山岛屿地应力测量研究及其地壳动力学意义

doi: 10.11899/zzfy20240184
基金项目: 云南省重大科技专项计划项目(202002AF080003)
详细信息
    通讯作者:

    刘冀昆,男,生于1997年。博士研究生。从事地球动力学方面的研究工作。E-mail:3002230006@email.cugb.edu.cn

In-situ Stress Measurement of Qushan Island in Hangzhou Bay and Its Crustal Dynamic Significance

  • 摘要: 杭州湾衢山岛屿位于中国大陆华北、华南活动地块和华北华南地应力分区的边界地带,该区域的地应力研究工作对于理解该区域地壳应力状态和地壳动力学行为意义重大。研究区小衢山岛大地构造位于华南地槽褶皱系的浙东南褶皱带的东北部,距上海芦潮港30海里。基于小衢山岛上3个钻孔的水压致裂原地应力测试数据综合分析,研究区最大水平主应力方向范围为N56.9°W~ N76.9°W,说明该区域主要受太平洋板块和菲律宾海板块向北西西、北西向俯冲推挤力源的影响。最大、最小水平主应力量值基本随深度增加而增大,最大水平主应力量值一般为7.39~15.74 MPa,最小水平主应力量值一般为3.99~8.41 MPa,最大、最小侧压力系数范围分别为kH=2.11~7.56,kh=1.23~3.85。利用实测数据计算的剪应力积累因子μ的范围是0.36~0.77,平均值为0.55,剪应力积累程度较高。研究结果为认识中国大陆东部华北、华南活动地块的分界分区问题提供了新的地应力证据。
  • 图  1  XQS石油储备洞库址区域构造图

    Figure  1.  Regional geological structure map of XQS oil reserve cavern site

    图  2  典型测试段水压致裂原地应力测量压力-时间图

    Figure  2.  Typical pressure-time diagram for in-situ stress measurement during hydraulic fracturing test section

    图  3  钻孔ZKS-2钻孔裂隙扫描录井图像

    Figure  3.  ZKS-2 Borehole fracture scanning logging image

    图  4  3个钻孔的SHSh随深度变化关系图

    Figure  4.  SH and Sh changes with depth of three boreholes

    图  5  3个钻孔的SH方向分布玫瑰图

    Figure  5.  Rose diagram of SH direction distribution of three boreholes

    图  6  三个钻孔的侧压力系数随深度的拟合变化图

    Figure  6.  Fitting variation of lateral pressure coefficients with depth of three boreholes

    表  1  3个钻孔水压致裂原地应力数据及特征值分析汇总表

    Table  1.   Summary of hydraulic fracturing in-situ stress data and characteristic value analysis for three drilling holes

    钻孔编号 深度 SH Sh Sv kH kh μ R 最大主应力方向
    /m /MPa /MPa /MPa
    ZKS-1 71.54 4.83 2.40 1.90 2.55 1.27 0.44 0.17
    80.86 5.52 2.79 2.14 2.58 1.30 0.44 0.19
    89.47 6.00 3.08 2.37 2.53 1.30 0.43 0.19 N61.9°W
    93.42 8.54 4.42 2.48 3.45 1.78 0.55 0.32
    ZKS-1 97.38 6.48 3.35 2.58 2.51 1.30 0.43 0.20
    162.21 11.02 5.89 4.30 2.56 1.37 0.44 0.24
    167.27 10.07 5.44 4.43 2.27 1.23 0.39 0.18
    181.49 12.20 6.68 4.81 2.54 1.39 0.43 0.25 N63.3°W
    192.96 14.82 7.99 5.11 2.90 1.56 0.49 0.30 N63.3°W
    205.54 15.74 8.41 5.45 2.89 1.54 0.49 0.29 N58.9°W
    ZKS-2 60.87 10.60 5.50 1.61 6.57 3.41 0.74 0.43
    62.84 10.32 5.42 1.67 6.19 3.25 0.72 0.43
    66.1 13.25 6.75 1.75 7.56 3.85 0.77 0.43
    71.24 9.80 5.20 1.89 5.19 2.75 0.68 0.42 N75.3°W
    75.47 9.44 5.04 2.00 4.72 2.52 0.65 0.41 N76.9°W
    76.34 10.55 5.85 2.02 5.21 2.89 0.68 0.45
    80.93 7.39 3.99 2.14 3.45 1.86 0.55 0.35
    85.94 9.64 4.84 2.28 4.23 2.13 0.62 0.35 N56.9°W
    90.94 9.79 5.19 2.41 4.06 2.15 0.60 0.38
    95.86 7.54 4.14 2.54 2.97 1.63 0.50 0.32
    100.42 10.88 5.78 2.66 4.09 2.17 0.61 0.38 N69.6°W
    ZKS-3 65.70 3.67 2.14 1.74 2.11 1.23 0.36 0.21 N70.1°W
    76.72 5.58 3.05 2.03 2.74 1.50 0.47 0.29 N66.3°W
    90.07 10.81 5.78 2.39 4.53 2.42 0.64 0.40
    98.16 10.79 5.76 2.60 4.15 2.22 0.61 0.39
    101.74 10.92 5.90 2.70 4.05 2.19 0.60 0.39
    117.76 10.28 5.65 3.12 3.29 1.81 0.53 0.35 N68.3°W
    均值 3.77 2.00 0.55 0.32 N67.0°W
    注:侧压力系数kH=SH/SVkh=Sh/SV; 剪应力积累因子μ=(SHSV)/(ShSV); 应力型因子R=(SHSh) /(SHSV)。
    下载: 导出CSV
  • 陈婧, 杨彦明, 肖爽等, 2019. 基于非线性拟合的上海及周边地区地震烈度衰减关系研究. 高原地震, 31(3): 6−12. doi: 10.3969/j.issn.1005-586X.2019.03.002

    Chen J., Yang Y. M., Xiao S., et al., 2019. Study on seismic intensity attenuation in shanghai and its adjacent regions based on nonlinear fitting. Plateau Earthquake Research, 31(3): 6−12. (in Chinese) doi: 10.3969/j.issn.1005-586X.2019.03.002
    陈涛, 宋方敏, 陈献程等, 2019. 2017年临安4.2级地震震中附近断裂活动性研究. 华南地震, 39(1): 115−128.

    Chen T., Song F. M., Chen X. C., et al., 2019. Study on the activity of faults near the epicenter of the Lin'an M4.2 earthquake in 2017. South China Journal of Seismology, 39(1): 115−128. (in Chinese)
    高敏, 王鑫, 张景发, 2015. 利用遥感、重磁数据研究昌化−普陀断裂的空间展布特征. 科学技术与工程, 15(4): 1−4, 16. doi: 10.3969/j.issn.1671-1815.2015.04.001

    Gao M., Wang X., Zhang J. F., 2015. The space distribution characteristics research of changhua−putuo fracture based on remote sensing, gravity and magnetic data. Science Technology and Engineering, 15(4): 1−4,16. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.04.001
    Han J. Z., Xu J., Yan Y. K., et al., 2003. Active blocks and strong seismic activity in North China region. Science in China Series D: Earth Sciences, 46(2): 153−167.
    胡峰, 姚华建, 余厚云等, 2024. 分形应力对设定地震构建的影响−−以郯庐断裂带为例. 中国科学: 地球科学, 54(5): 1714−1724. (查阅所有网上资料, 本条文献中英文分开发表, 请联系作者确认)

    Hu F., Yao H. J., Yu H. Y., et al., 2024. Influence of self-similar stresses on scenario earthquake construction: an example along the Tanlu Fault. Science China Earth Sciences, 67(5): 1687−1697. (in Chinese)
    基姆弗兰克林, 张受天, 1988. 国际岩石力学学会试验方法委员会确定岩石应力的建议方法. 岩石力学与工程学报, 7(4): 357−388.
    李宏, 安其美, 谢富仁, 2005. 福建沿海边缘陆域的原地应力测量研究. 地震学报, 27(5): 508−514.

    Li H., An Q. M., Xie F. R., 2005. Study on in-situ stress measurement around coastal marginal land in fujian. Acta Seismologica Sinica, 27(5): 508−514. (in Chinese)
    李伟, 李嘉, 吴宛秋等, 2024. 郯庐断裂带辽东湾段新生代右旋走滑时限的探讨. 地球科学, 49(6): 2071−2084. doi: 10.3799/dqkx.2022.480

    Li W., Li J., Wu W. Q., et al., 2024. Time limit of dextral strike-slip in cenozoic of Liaodong bay section of Tan-Lu fault zone. Earth Science, 49(6): 2071−2084. (in Chinese) doi: 10.3799/dqkx.2022.480
    曲国胜, 郝重涛, 陈国光等, 1992. 镇海−温州断裂分段性及新生代构造应力场研究. 地震学刊, 12(2): 11−20.

    Qu G. S., Hao C. T., Chen G. G., et al., 1992. A study on the segmentation and tectonic stress field of the zhenhai-wenzhou extending faults in cenozoic. Journal of Seismology, 12(2): 11−20. (in Chinese)
    任烨, 夏波, 刘菲, 2018. 孔底解除法在上海综合深井钻孔原地应力测量中的应用. 华南地震, 38(1): 71−76. doi: 10.13512/j.hndz.2018.01.009

    Ren Y., Xia B., Liu F., 2018. Application of hole-bottom relief method in stress measurement of in-situ bored hole in Shanghai. South China Journal of Seismology, 38(1): 71−76. (in Chinese) doi: 10.13512/j.hndz.2018.01.009
    王成虎, 郭啟良, 丁立丰等, 2009. 工程区高地应力判据研究及实例分析. 岩土力学, 30(8): 2359−2364. doi: 10.3969/j.issn.1000-7598.2009.08.029

    Wang C. H., Guo Q. L., Ding L. F., et al., 2009. High in-situ stress criteria for engineering area and a case analysis. Rock and Soil Mechanics, 30(8): 2359−2364. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.08.029
    王成虎, 2014. 地应力主要测试和估算方法回顾与展望. 地质论评, 60(5): 971−996. doi: 10.16509/j.georeview.2014.05.005

    Wang C. H., 2014. Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass. Geological Review, 60(5): 971−996. (in Chinese) doi: 10.16509/j.georeview.2014.05.005
    王辉, 张国民, 汪素云等, 2004. 应用地震学方法研究中国大陆活动地块应力应变场. 地球物理学报, 47(6): 1035−1043.

    Wang H., Zhang G. M., Wang S. Y., et al., 2004. Stress and strain fields of active tectonic blocks in the China mainland deduced by seismological methods. Chinese Journal of Geophysics, 47(6): 1035−1043. (in Chinese)
    吴义, 胡志生, 刘冬等, 2021. 温州市突发性地质灾害发育特征及防治对策. 地质论评, 67(S1): 5−6.

    Wu Y., Hu Z. S., Liu D., et al., 2021. Development characteristics and prevention countermeasures of sudden geological disasters in Wenzhou. Geological Review, 67(S1): 5−6. (in Chinese)
    谢富仁, 崔效锋, 赵建涛等, 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47(4): 654−662. doi: 10.3321/j.issn:0001-5733.2004.04.016

    Xie F. R., Cui X. F., Zhao J. T., et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese Journal of Geophysics, 47(4): 654−662. (in Chinese) doi: 10.3321/j.issn:0001-5733.2004.04.016
    徐纪人, 赵志新, 石川有三, 2008. 中国大陆地壳应力场与构造运动区域特征研究. 地球物理学报, 51(3): 770−781.

    Xu J. R., Zhao Z. X., Yuzo, I., 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland. Chinese Journal of Geophysics, 51(3): 770−781. (in Chinese)
    徐杰, 周本刚, 计凤桔等, 2012. 中国东部海域及其邻区现代构造应力场研究. 地学前缘, 19(4): 1−7.

    Xu J., Zhou B. G., Ji F. J., et al., 2012. The recent tectonic stress field of offshore of China mainland and adjacent areas. Earth Science Frontiers, 19(4): 1−7. (in Chinese)
    徐峣, 张永谦, 严加永等, 2019. 华南东南部上地幔远震P波速度结构及意义. 中国地质, 46(4): 737−749. doi: 10.12029/gc20190405

    Xu Y., Zhang Y. Q., Yan J. Y., et al., 2019. Teleseismic P-wave velocity structure of upper mantle beneath the southeastern part of South China and its implications. Geology in China, 46(4): 737−749. (in Chinese) doi: 10.12029/gc20190405
    严兆彬, 2018. 浙西早寒武世地震事件沉积特征与地质意义研究. 北京: 中国矿业大学(北京).

    Yan Z. B., 2018. Sedimentary features resulting from seismic events of the early cambrian in the western Zhejiang province and its geological significance. Beijing: China University of Mining & Technology, Beijing. (in Chinese)
    叶建亭, 周舟, 2019. 浙江青田县东源辉绿岩矿矿体特征及覆盖层分布. 世界有色金属, 44(8): 258−259. doi: 10.3969/j.issn.1002-5065.2019.08.151

    Ye J. T., Zhou Z., 2019. Ore body characteristics and cover layer distribution of Dongyuan diabase in Qingtian County, Zhejiang Province. World Nonferrous Metals, 44(8): 258−259. (in Chinese) doi: 10.3969/j.issn.1002-5065.2019.08.151
    于海英, 魏薇, 王鹏等, 2022.2021年11月17日江苏省盐城市大丰区海域MS5.0地震快速测定与应急产品产出. 地震地磁观测与研究, 43(3): 172−177.

    Yu H. Y. , Wei W. , Wang P. , et al. , 2021. Fast detection and emergency products output of the MS5.0 earthquake in Dafeng sea area, Yancheng City, Jiangsu Province on November 17, 2021. Seismological and Geomagnetic Observation and Research, 43(3): 172−177. (in Chinese)
    苑伟娜, 石富强, 吴静, 2021. 华北地区应力累积变化及其对现今地震活动的指示. 大地测量与地球动力学, 41(9): 939−944.

    Yuan W. N., Shi F. Q., Wu J., 2021. Cumulated stress changes and its implications for current seismic activities in North China. Journal of Geodesy and Geodynamics, 41(9): 939−944. (in Chinese)
    张国民, 马宏生, 王辉等, 2005. 中国大陆活动地块边界带与强震活动. 地球物理学报, 48(3): 602−610. doi: 10.1002/cjg2.693

    Zhang G. M., Ma H. S., Wang H., et al., 2005. Boundaries between active_tectonic blocks and strong earthquakes in the China mainland. Chinese Journal of Geophysics, 48(3): 602−610. (in Chinese) doi: 10.1002/cjg2.693
    张浩, 施刚, 巫虹等, 2020. 上海地区浅部地应力测量及其构造地质意义分析. 地质力学学报, 26(4): 583−594. doi: 10.12090/j.issn.1006-6616.2020.26.04.051

    Zhang H., Shi G., Wu H., et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance. Journal of Geomechanics, 26(4): 583−594. (in Chinese) doi: 10.12090/j.issn.1006-6616.2020.26.04.051
    张培震, 王琪, 马宗晋, 2002. 中国大陆现今构造运动的GPS速度场与活动地块. 地学前缘, 9(2): 430−441. doi: 10.3321/j.issn:1005-2321.2002.02.022

    Zhang P. Z., Wang Q., Ma Z. J., 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental china. Earth Science Frontiers, 9(2): 430−441. (in Chinese) doi: 10.3321/j.issn:1005-2321.2002.02.022
    Zhang P. Z., Deng Q. D., Zhang G. M., et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D: Earth Sciences, 46(2): 13−24.
    Zhang Y. X., Song C. S., Zhao J. H., 2015. Study on hydraulic fracturing method for in situ stress measurement in deep boreholes. Applied Mechanics and Materials, 741: 567−571. doi: 10.4028/www.scientific.net/AMM.741.567
    Zoback M. D., Barton C. A., Brudy M., et al., 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1049−1076. doi: 10.1016/j.ijrmms.2003.07.001
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 录用日期:  2024-09-02
  • 修回日期:  2024-08-19
  • 网络出版日期:  2026-01-13

目录

    /

    返回文章
    返回