Numerical Analysis of the Characteristics of Zhongchuan Township Flow-Slip Motion induced by Jishishan Ms6.2 Earthquake
-
摘要: 甘肃积石山6.2级地震诱发了1处特殊的地质流滑灾害,使青海省民和县中川乡金田村和草滩村一带受到了严重的人员伤亡与经济损失。在现场调查流滑运动和堆积特征的基础上,运用离散元方法探究中川乡流滑的运移过程及运动特征,并得出了以下结论:(1)中川乡流滑具有快速远程的运动特征。整体的运动速度相对较快,流滑区运动平均速度为1.16 m/s,冲击速度为2.85 m/s,局部最大速度可达25.6 m/s,具有极强的瞬时冲击力和破坏性。(2)中川乡流滑的滑动距离远,最大位移可达2.8 km,致灾范围表现为长条状。运动的流态化是造成在平缓场地发生大面积致灾范围的原因。(3)特殊地形造成流滑具有多处堆积区,是东侧堆积区堆积体较少的根源。土坝的破坏和流通区的变窄造成了流滑速度增大和滑动距离增长。中川乡流滑运动特征的分析为此类灾害的防范提供了重要的理论和现实意义。Abstract: The 6.2-magnitude earthquake in Jishishan, Gansu Province triggered a unique geological flow-slip disaster, resulting in severe casualties and economic losses in Jintian Village and Caotan Village, Zhongchuan Township, Minhe County, Qinghai Province. Basis on field investigations of flow-slip movement and accumulation characteristics, the Discrete Element Method was employed to analyze the migration process and movement characteristics of the flow-slip in Zhongchuan Township, yielding the following conclusions: 1.The flow-slip in Zhongchuan Township has the characteristics of fast and long-distance motion. The overall velocity is relatively fast, the average velocity within the flow-slip zone measures 1.16 m/s, with an impact velocity of 2.85 m/s. Local maximum velocity can reach 25.6 m/s, indicating considerable instantaneous impact force and destructiveness. 2.The sliding distance of the flow-slip in Zhongchuan Township is far away, the maximum displacement can reach 2.8 km, and the affected area is long strip. The fluidization of the movement is the cause of the large area affected area in the gentle site. 3.The flow-slip caused by the special terrain has multiple accumulation areas, which is the root cause of the less accumulation in the accumulation area on the east side. The failure of the earth dam and the narrowing of the circulation area result in the increase of the flow -slip velocity and the sliding distance. The analysis of the characteristics of the flow-slip movement in Zhongchuan Township provides important theoretical and practical significance for the prevention of such disasters.
-
表 1 黄土的土工试验参数
Table 1. Geotechnical test parameters of loess
岩性 含水率/% 密度/(g·cm−3) 液限/% 塑限/% 塑性指数 液性指数 黏聚力/kPa 内摩擦角(°) 黄土 16.4 1.421 30.6 21.1 9.5 -0.49 24.09 24 表 2 不同接触模型下的黄土颗粒细观参数
Table 2. The microscopic parameters of loess particles under different contact models
接触种类 颗粒密度/(kg·m−3) 接触刚度/Pa 黏结强度/Pa 抗拉强度/Pa 黏聚力/Pa 摩擦系数 局部阻尼 法向 切向 法向 切向 线性接触 2300 1.0×107 1.0×106 0 0 0 0 0.1 0.70 平行黏结 2300 9.0×106 1.3×104 9×106 1.3×104 6.6×105 1×105 0.9 0.70 液化参数 2300 9.0×106 1.3×104 9×106 1.3×104 1.0×103 5×104 0.0 0.05 -
常晁瑜, 2022. 强震作用下黄土斜坡流滑机理及动态演化. 哈尔滨: 中国地震局工程力学研究所.Chang C. Y., 2022. Mechanism and dynamic evolution of seismic sliding flow on loess slopes. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) 常晁瑜, 徐久欢, 薄景山等, 2022. 基于颗粒流的地震液化型滑坡运动学特征分析. 地震工程与工程振动, 42(6): 153−161.Chang C. Y., Xu J. H., Bo J. S., et al., 2022. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow. Earthquake Engineering and Engineering Dynamics, 42(6): 153−161. (in Chinese) 常晁瑜, 乔峰, 薄景山等, 2025. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报, 45(02): 349−356.Chang C. Y., Qiao F., Bo J. S., et al., 2025. Preliminary Study on the Causes of Landslide Formation in Zhongchuan township Induced by the 6.2-Magnitude Earthquake in Jishishan, Gansu Province. Journal of Disaster Prevention and Mitigation Engineering, 45(02): 349−356. (in Chinese) 陈果, 钮志林, 樊晓一等, 2022. 高速远程滑坡沿程速度演化与冲击力分布研究−−以三溪村滑坡为例. 自然灾害学报, 31(3): 232−241.Chen G., Niu Z. L., Fan X. Y., et al., 2022. Velocity evolution and impact force distribution of high-velocity and long-runout landslide debris flow along the way: a case study of Sanxi Village landslide. Journal of Natural Disasters, 31(3): 232−241. (in Chinese) 陈龙伟, 汪云龙, 袁晓铭等, 2024. 2023年甘肃积石山6.2级地震中川乡液化流滑灾害调查及诱因初析. 地震工程与工程振动, 44(1): 187−193.Chen L. W., Wang Y. L., Yuan X. M., et al., 2024. Preliminary analysis for the triggering of soil flowslide that occurred in Zhongchuan Town following the 2023 Jishishan MS6.2 earthquake in Gansu Province. Earthquake Engineering and Engineering Dynamics, 44(1): 187−193. (in Chinese) 郭安宁, 苏小宁, 蒲小武, 2024. 2023年12月18日甘肃积石山6.2级地震及启示. 科学技术与工程, 24(8): 3072−3085. doi: 10.12404/j.issn.1671-1815.2400059Guo A. N., Su X. N., Pu X. W., 2024. The 6.2 magnitude earthquake in Jishishan, Gansu on December 18, 2023 and its enlightenment. Science Technology and Engineering, 24(8): 3072−3085. (in Chinese) doi: 10.12404/j.issn.1671-1815.2400059 贾俊, 朱立峰, 胡炜, 2013. 甘肃黑方台地区灌溉型黄土滑坡形成机理与运动学特征−−以焦家崖头13号滑坡为例. 地质通报, 32(12): 1968−1975. doi: 10.12097/gbc.20131211Jia J., Zhu L. F., Hu W., 2013. The formation mechanism and disaster mode of loess landslides induced by irrigation in Heifangtai, Gansu Province: a case study of the 13th landslide in Jiaojiayatou. Geological Bulletin of China, 32(12): 1968−1975. (in Chinese) doi: 10.12097/gbc.20131211 蒋伟, 王永志, 袁晓铭等, 2024. 2023年甘肃积石山MS6.2地震宏观灾害特征与若干思考. 防灾减灾工程学报, 44(1): 1−11.Jiang W., Wang Y. Z., Yuan X. M., et al., 2024. Macroscopic hazard characteristics of the 2023 Gansu Jishishan MS6.2 earthquake and some proposals. Journal of Disaster Prevention and Mitigation Engineering, 44(1): 1−11. (in Chinese) 李亚军, 岳东霞, 陈冠等, 2024. 积石山地震诱发金田-草滩村滑坡-泥流灾害链过程与成因. 兰州大学学报(自然科学版), 60(1): 1−5.Li Y. J., Yue D. X., Chen G., et al., 2024. A preliminary analysis of the process and cause of the Jintian-Caotan landslide-mudflow hazard chain induced by the Jishishan Earthquake. Journal of Lanzhou University (Natural Sciences), 60(1): 1−5. (in Chinese) 刘港, 贾俊, 张戈等, 2024. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质, 57(2): 220−229.Liu G., Jia J., Zhang G., et al., 2024. Characteristics and initiation mechanism of the liquefied mudflow caused by Jishishan earthquake in Gansu Province and its enlightenment on risk assessment of secondary earthquake disasters in the Upper Yellow River Basin. Northwestern Geology, 57(2): 220−229. (in Chinese) 刘振江, 韩炳权, 能懿菡等, 2025. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布. 武汉大学学报(信息科学版), 50(2): 344−355.Liu Z. J., Han B. Q., Nai Y. H., et al., 2025. Source parameters and slip distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) earthquake constrained by InSAR observations. Geomatics and Information Science of Wuhan University, 50(2): 344−355. (in Chinese) 罗毅, 李德文, 姜文亮等, 2024. 2023年积石山6.2级地震诱发的中川乡泥石流灾害过程与成因分析. 地震工程学报, 46(4): 802−817.Luo Y., Li D. W., Jiang W. L., et al., 2024. Process and causes of the debris flow in Zhongchuan Township induced by Jishishan MS6.2 earthquake in 2023. China Earthquake Engineering Journal, 46(4): 802−817. (in Chinese) 孟桓羽, 占洁伟, 卢全中等, 2023. 陕西山阳“8·12”大型山体滑坡运动特征及数值模拟分析. 工程地质学报, 31(6): 1910−1928.Meng H. Y., Zhan J. W., Lu Q. Z., et al., 2023. Kinematic characteristics and numerical simulation analysis of "8·12" giant landslide in Shanyang County, Shaanxi Province. Journal of Engineering Geology, 31(6): 1910−1928. (in Chinese) 沈伟, 李同录, 2016. 高速远程滑坡运动学研究综述. 见: 2016年全国工程地质学术年会论文集. 成都: 中国地质学会工程地质专业委员会, 12. 唐昭荣, 袁仁茂, 胡植庆等, 2012. 台湾集集地震九份二山滑坡发生机制的三维数值模拟分析. 工程地质学报, 20(6): 940−954. doi: 10.3969/j.issn.1004-9665.2012.06.006Tang C., Yuan R. M., Hu J., et al., 2012. 3-D distinct element modeling of sliding process and depositing behavior in Jiufengershan landslide induced by 1999 Taiwan Chi-Chi earthquake. Journal of Engineering Geology, 20(6): 940−954. (in Chinese) doi: 10.3969/j.issn.1004-9665.2012.06.006 涂正楠, 冯君, 邓应进等, 2024. 四川甘洛县比依市村滑坡运动特征分析. 中国地质灾害与防治学报, 35(1): 92−99.Tu Z. N., Feng J., Deng Y. J., et al., 2024. Analysis of the landslide movement characteristics in Biyi Village, Ganluo County, Sichuan Province, through SPH numerical simulation. The Chinese Journal of Geological Hazard and Control, 35(1): 92−99. (in Chinese) 王多智, 谢笠, 陈永盛等, 2024. 2023年积石山地震重要公共建筑吊顶震害调查分析. 地震工程与工程振动, 44(2): 218−223.Wang D. Z., Xie L., Chen Y. S., et al., 2024. Investigation of seismic damage to ceilings of public buildings during the 2023 Jishishan earthquake. Earthquake Engineering and Engineering Dynamics, 44(2): 218−223. (in Chinese) 王兰民, 许世阳, 王平等, 2024. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报, 46(2): 235−243. doi: 10.11779/CJGE20240038Wang L. M., Xu S. Y., Wang P., et al., 2024. Characteristics and lessons of liquefaction-triggered large-scale flow slide in loess deposit during Jishishan M6.2 earthquake in 2023. Chinese Journal of Geotechnical Engineering, 46(2): 235−243. (in Chinese) doi: 10.11779/CJGE20240038 王辽, 谢虹, 蒲小武等, 2024. 2023年积石山MS6.2地震诱发中川乡滑坡-泥流滑动过程与成因机理研究. 地震工程学报, 46(4): 791−801.Wang L., Xie H., Pu X. W., et al., 2024. Sliding process and causative mechanism of the Zhongchuan landslide-mudflow disaster chain induced by the 2023 Jishishan MS6.2 earthquake. China Earthquake Engineering Journal, 46(4): 791−801. (in Chinese) 吴钟腾, 冯文凯, 朱继良等, 2015. 云南省彝良县麻窝滑坡危害范围三维数值模拟分析. 工程地质学报, 23(S1): 392−397.Wu Z. T., Feng W. K., Zhu J. L., et al., 2015. Simulation analysis of landslide hazards area using three-dimensional in Mawo mountain in Yiliang county, Yunnan province. Journal of Engineering Geology, 23(S1): 392−397. (in Chinese) 许强, 彭大雷, 范宣梅等, 2025. 甘肃积石山MS6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理. 武汉大学学报(信息科学版), 50(2): 207−222.Xu Q., Peng D. L., Fan X. M., et al., 2025. Preliminary study on the characteristics and initiation mechanism of Zhongchuan flowslide due to liquefaction triggered by the MS 6.2 Jishishan earthquake in Gansu Province. Geomatics and Information Science of Wuhan University, 50(2): 207−222. (in Chinese) 杨锟, 叶永, 谢旋, 2025. 基于离散元模型的聚合型滑坡碎屑流聚合角度影响研究. 地质科技通报, 44(02): 116−129.Yang K., Ye Y., Xie X., 2025. Research on the influence of fragmentation angle of cohesive landslide debris flow based on discrete element model. Geological Science Bulletin, 44(02): 116−129. (in Chinese) 杨永强, 田健叶, 周宝峰等, 2024. 甘肃积石山6.2级地震村镇建筑震害调查与分析. 地震工程与工程振动, 44(2): 208−217.Yang Y. Q., Tian J. Y., Zhou B. F., et al., 2024. Investigation and analysis of seismic damage of rural buildings caused by MS6.2 earthquake in Jishishan of Gansu Province. Earthquake Engineering and Engineering Dynamics, 44(2): 208−217. (in Chinese) 张玉柱, 沈铭健, 郭永强等, 2024. 积石山MS 6.2级地震诱发的次生泥流灾害再现喇家遗址史前灾难场景. 科学通报, 69(10): 1320−1326.Zhang Y. Z., Shen M. J., Guo Y. Q., et al., 2024. The mudflow disaster induced by the MS 6.2 Jishishan earthquake reproduces the prehistorical catastrophes in the Lajia Ruins. Chinese Science Bulletin, 69(10): 1320−1326. (in Chinese) Cruden, D. M. , Varnes, D. J. , 1996, Landslide Types and Processes, Special Report, Transportation Research Board, National Academy of Sciences, 247: 36-75. De Blasio F. V., 2008. Production of frictional heat and hot vapour in a model of self-lubricating landslides. Rock Mechanics and Rock Engineering, 41(1): 219−226. doi: 10.1007/s00603-007-0153-8 Farhadi A., Emdad H., Rad E. G., 2016. Incompressible SPH simulation of landslide impulse-generated water waves. Natural Hazards, 82(3): 1779−1802. doi: 10.1007/s11069-016-2270-8 Hsü K. J., 1975. Catastrophic debris streams (sturzstroms) generated by rockfalls. GSA Bulletin, 86(1): 129−140. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 Kent P. E., 1966. The transport mechanism in catastrophic rock falls. The Journal of Geology, 74(1): 79−83. doi: 10.1086/627142 Lo C. M., Lin M. L., Tang C. L., et al., 2011. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Engineering Geology, 123(1-2): 22−39. doi: 10.1016/j.enggeo.2011.07.002 Shreve, Ronald L, 1968. The Blackhawk Landslide. GSA Special Paper 108. Geological Society of America. Varnes, D. J., 1958. Landslide Types and Processes. Landslides and Engineering Practice, 24: 20−47. Varnes D. J. , 1978. Slope movement types and processes. Washington: Transportation Research Board, 11−33. Zhou Y. Y., Shi Z. M., Zhang Q. Z., et al., 2019. 3D DEM investigation on the morphology and structure of landslide dams formed by dry granular flows. Engineering Geology, 258: 105151. doi: 10.1016/j.enggeo.2019.105151 Zou Z. X., Tang H. M., Xiong C. R., et al., 2017. Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China. Geomorphology, 295: 1−15. doi: 10.1016/j.geomorph.2017.06.012 -