• ISSN 1673-5722
  • CN 11-5429/P

场地地震反应分析的研究进展与展望

吴双兰 陈佳鑫 陈国兴 张正阳 野津厚 赵凯

吴双兰,陈佳鑫,陈国兴,张正阳,野津厚,赵凯,2025. 场地地震反应分析的研究进展与展望. 震灾防御技术,x(x):1−16. doi:10.11899/zzfy20240180. doi: 10.11899/zzfy20240180
引用本文: 吴双兰,陈佳鑫,陈国兴,张正阳,野津厚,赵凯,2025. 场地地震反应分析的研究进展与展望. 震灾防御技术,x(x):1−16. doi:10.11899/zzfy20240180. doi: 10.11899/zzfy20240180
Wu Shuanglan, Chen Jiaxin, Chen Guoxing, Zhang Zhengyang, Nozu Atsushi, Zhao Kai. Recent Advances and Prospect in Seismic Site Response Analysis[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240180
Citation: Wu Shuanglan, Chen Jiaxin, Chen Guoxing, Zhang Zhengyang, Nozu Atsushi, Zhao Kai. Recent Advances and Prospect in Seismic Site Response Analysis[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240180

场地地震反应分析的研究进展与展望

doi: 10.11899/zzfy20240180
基金项目: 国家自然科学基金项目(52378347, 52278503);中国地震局工程力学研究所基本科研业务费专项资助项目(2023 D10)
详细信息
    作者简介:

    吴双兰,女,生于1987年。副教授。主要从事岩土地震工程方面的研究工作。E-mail:wushuang7850@163.com

    通讯作者:

    赵凯,男,生于1982年。教授。主要从事岩土地震工程方面的研究工作。E-mail:zhaokai@njtech.edu.cn

Recent Advances and Prospect in Seismic Site Response Analysis

  • 摘要: 场地条件、地震动输入对地震动表现有显著影响,因此,深入了解场地的抗震性能并分析其对地震动的响应,对于理解地面运动至关重要。本文综合考察了场地条件和地震动输入对场地地震反应的影响机理,并全面概述了目前广泛使用的地震反应分析方法。场地地震反应分析是场地地震安全性评价和工程结构抗震设计的重要环节,主要分为确定性和不确定性分析方法,两者的主要区别在于是否考虑土体参数及地震动参数的不确定性。目前国内外研究学者针对确定性振动分析方法的研究较多,而对于随机振动分析方法的研究成果则相对较少。文章对需深入探索的研究工作进行了展望,旨在为场地地震反应分析未来的研究方向提供有价值的参考和指导。
  • 图  1  近现代强震引发的典型地震地质灾害

    Figure  1.  Seismic geologic damages caused by modern strong earthquakes

    图  2  2000年日本鸟取西部地震中局部场地地质地形诱发的显著不同速度波形

    Figure  2.  Significantly Different Velocity Waveforms Induced by Local Site Geology and Topography in the 2000 Western Tottori Earthquake, Japan

    表  1  确定性分析方法

    Table  1.   Deterministic analysis methods

    作者 发表
    时间
    研究方法或理论 研究工作内容 研究结论及意义
    Idriss等 1973 等效线性化方法 将不同应变幅度下的剪切模量和阻尼比等效化处理,把非线性问题转化为线性问题。 考虑土层非线性效应。
    齐文浩等 2007 等效线性化方法 总结了等效线性化方法的发展历程和现状。 全面评估等效线性化方法的应用现状,并分析其优缺点及机理。
    章文波等 2001 线性反演法及传统的谱比法和接收函数法 利用唐山地区的强震观测资料,用3种方法对估计场地的地震动反应进行了对比研究。 3种方法都能识别出场地的卓越周期,但有差异。
    高峰等 2003 一维等效线性化方法 考虑了冻土层的存在和地基辐射阻尼的影响,并运用一维波动理论进行了反演计算。 在结构抗震设计时,应考虑季节的变化、地基辐射阻尼和场地区域地震动特性等因素的影响。
    杉戸真太等 1994 频率域等效线性分析方法 考虑了土的剪切模量和阻尼比的频率相关性。 针对软弱地基和地震动较大情况下SHAKE 的计算结果与观测结果的差异,对等效线性化方法进行改进,并开发了新的计算程序(FDEL)。
    Yoshida等 2002 频率域等效线性分析方法 将分析的频率分成 3 个区段,每个区段中采用不同的计算公式来求解等效应变。 主要解决了基于SHAKE算得的土层应力值偏大,而高频段频响放大倍率比实际值偏低的主要缺陷,并开发了新的程序(DYNEQ)。
    Kausel和Assimaki 2002 频率域等效线性分析方法 为考虑剪切模量和阻尼比的频率相关性,提出了剪切模量和阻尼比与频率的关系,并给出了建议的等效应变与频率的关系式。 主要改善了等效线性化方法计算场地地震反应时,在地表附近得到的地震动傅立叶幅值谱在高频段的值偏低的情况。
    蒋通等 2007 频率域等效线性分析方法 采用谱平滑化方法进行标准化应变谱曲线拟合后得到考虑频率相关性的新方法。 所采用土应变-频率关系较好地反应了土层材料性质随频率的变化趋势,可应用于工程场地的非线性地震反应分析计算。
    王笃国等 2019 频率相关等效线性化方法 通过数据回归建立了土体剪切模量和阻尼比随频率变化的模型,并将这些频率依赖的参数应用于等效线性化理论中。 考虑频率相关特性的方法能更真实地反映场地在不同频率下的地震反应。
    Wu等 2023 频率域等效线性分析方法 引入复频率至常规的等效线性分析框架中。 解决了输入地震动为考虑永久位移错断的近断层强震动时程时,常规等效线性分析框架无法在频域开展的问题。
    金星等 2004 水平成层场地地震反应的非线性分析方法 研究方法结合了Pyke提出的土动力本构模型以及廖振鹏等(2002)提出的多次透射人工边界条件。 该方法能够较好地模拟土层随着输入地震动的增大,有非线性程度增强、反应幅值下降、基频向长周期偏移的特性。
    陈三红 2017 等效线性化方法 对不同场地类别进行地震动反演分析,编制了一维场地等效线性化程序。 该程序解决了高频部分傅里叶幅值被过分放大的问题,且在处理地震动数据长度和场地土层数目上没有限制。
    杨笑梅等 2017 时域二维等效线性化分析方法 主要借鉴一维成层场地地震反应分析中广泛使用的频域等效线性化思想,将场地响应问题推广至时域及二维问题,提出了可用于考虑非线性特征的时域显式有限元方法。 提出的方法,实现一维等效线性模型推广至二维时域地震反应分析,结合相应的显式有限元算法及适当的人工边界可实现复杂的高维非线性问题的求解,该方法可为高维土层非线性地震反应分析提供一条新的计算思路。
    鄢兆伦等 2021 特征线差分(时域非线性计算方法) 通过利用等效线性化方法和特征线差分方法对三类典型场地进行了土层反应计算,找到了基于等效线性分析方法高频缺失的原因。 相较于等效线性分析方法,特征线差分法在时域内逐步迭代,频率成分不会丢失,同时在土层间和土层内部节点之间存在着多次内插计算,增加高频分量,有望在以后的工作中推广其应用。
    李雪菊等 2023 时域二维场地模态叠加等效线性化方法 将模态摄动法和模态叠加法相结合,提出了一种非比例滞后阻尼二维场地的模态叠加等效线性化计算方法。 提高二维场地等效线性化的计算效率。
    Chen等 2021 时域非线性场地反应分析方法 提出了广义non-Masing土动力本构模型与场地非线性地震反应分析方法,引入等效剪切应变概念进一步修正土体本构模型。 显著提升了该模型在模拟复杂加载条件下土体非线性行为;且新的广义non-Masing非线性土动力本构模型的滞回圈构建法则简单且需记忆的状态变量极少,以单一应变增量为指标的加-卸载准则简单且精准,有效地表征了土的强非线性特征。
    张震 2020 等效线性化方法、频率相关等效线性化方法和时域非线性方法 对比分析3种方法在场地地震反应分析中的应用。 当输入地震动较大时,土体的应变进入非线性阶段,使用时域非线性方法,能更合理地模拟土层地震反应分析。
    下载: 导出CSV

    表  2  不确定性分析方法

    Table  2.   Random vibration methods

    作者 发表时间 研究方法 变量的不确定性 变量对结果的影响
    李天等 1994 基于仿真技术的随机场地地震反应分析方法 土力学参数与土层分布 土层参数的随机性是造成地震反应谱离散的重要原因。
    赵松戈等 2000 二阶泰勒级数展开方法 土层参数的变异系数及阻尼比 土层参数变异系数和阻尼比对传递函数的不确定性影响较大。
    门玉明等 2001 随机地震反应分析方法 土层的剪切模量 场地土的放大效应与土层的剪切模量及其变化规律有关。
    严松宏等 2005 随机振动理论和动力分析的有限元方法 冻土层厚度 随着冻土层厚度增加,场地卓越频率呈增大趋势,而场地地震反应呈减小趋势。
    陈龙伟等 2015 系统的变异性分析 地震动强度、震源距 发现地震动强度对放大函数的均值影响较小,但对其不确定性(标准差)有显著影响,特别是当PGA>0.6 m/s2时,放大函数的不确定性显著增大。震源距离是一个重要因素,近场区域的不确定性明显高于远场区域。震源方位角对放大函数的不确定性影响不大。
    Hu等 2019 基于概率密度演化方法的地震响应分析方法 剪切模量和摩擦角 剪切模量的空间变异性相对于摩擦角可能导致场地结构体系更不安全,可靠性更低。
    Liu等 2021 主要采用响应面法构建输入变量(如土体剪切波速、阻尼比、密度、层厚度和输入地震动特性)与输出响应(如地震动放大效应、频谱特性、地震动传递函数和地表加速度)之间的近似模型 输入变量(如土体剪切波速、阻尼比、密度、层厚度和输入地震动特性) 土体剪切波速、阻尼比、密度和层厚度的不确定性显著影响地震动放大效应和频谱特性,输入地震动特性变异性影响地表加速度和结构物响应,主要体现在高剪切波速通常会降低地震动放大效应,而低剪切波速则会增强放大效应;较高的阻尼比会减小地震动放大效应,而较低的阻尼比则会增加放大效应,特别是在高频段;地震动幅值、频率内容和持续时间的变异性会直接影响地表加速度和地震动传递函数的形态,导致地表响应的幅值和频谱发生变化。
    Tombari等 2019 结合模糊理论和随机方法的一维地震场地响应分析方法 VS、土体密度、剪切模量和阻尼比 土层不确定性对场地响应的影响表现在地震动的放大效应上。模糊分析结果展示了土层不确定性如何通过改变地表峰值加速度的模糊中值来影响结构的地震响应。
    Liu等 2023a 主要采用蒙特卡罗模拟方法对土体参数的变异性进行不确定性传播分析,同时利用有限元法开展场地地震响应分析 土体剪切波速、阻尼比、密度和层厚度的变异性 土体参数不确定性会导致地震动在土层中的放大效应出现显著变化;不同土体参数的变异性会导致地震动频谱特性发生变化,改变地震动传递函数的形态,影响地震波的传播路径和能量分布,进一步导致地表加速度的幅值和频谱内容变化。
    Xiong等 2023 水下悬浮隧道的非线性动态微分方程 非线性地震动位移 地震动的随机性在SFT中传播、波动、演化并最终反映为SFT的非线性地震动态响应。
    Wang等 2023 多维Hermite多项式混沌展开 覆盖层基岩输入地震动 场地响应的不确定性主要来源于覆盖层基岩输入地震动的不确定性。
    Zhong等 2023 一维频域等效线性分析法 土层的剪切模量和阻尼比 考虑VS不确定性会增加地震脆弱性曲线的离散性,且VS不确定性的增加导致结构在显著地震作用下的安全性能评估更为保守。
    张岩等 2024 嵌入式马尔可夫链模型 海床地层及其VS结构 地层变异性和VS的非线性趋势显著增大了模拟结果的标准差,即增加了结果的不确定性。
    Acunzo等 2024 等效线性粘弹性方法 地层地质构造 地层地质构造的不确定性和小尺度横向变异性对地震地面运动的影响是显著的,可以通过大规模的数值模拟来有效探索这些不确定性源。
    下载: 导出CSV
  • 巴振宁, 吴孟桃, 梁建文等, 2020. 高山-峡谷复合地形对入射平面P-SV波的散射. 应用数学和力学, 41(7): 695−712.

    Ba Z. N., Wu M. T., Liang J. W., et al., 2020. Scattering and diffraction by the hill-canyon composite topography for incident plane P-and SV-waves. Applied Mathematics and Mechanics, 41(7): 695−712. (in Chinese)
    宝鑫, 刘晶波, 王东洋等, 2020. 局部成层的海域岛礁场地地震反应分析. 振动与冲击, 39(21): 55−64.

    Bao X., Liu J. B., Wang D. Y., et al., 2020. Seismic response analysis of local layered sea reef site. Journal of Vibration and Shock, 39(21): 55−64. (in Chinese)
    薄景山, 李秀领, 李山有, 2003. 场地条件对地震动影响研究的若干进展. 世界地震工程, 19(2): 11−15. doi: 10.3969/j.issn.1007-6069.2003.02.002

    Bo J. S., Li X. L., Li S. Y., 2003. Some progress of study on the effect of site conditions on ground motion. World Earthquake Engineering, 19(2): 11−15. (in Chinese) doi: 10.3969/j.issn.1007-6069.2003.02.002
    陈国兴, 2007. 岩土地震工程学. 北京: 科学出版社.
    陈国兴, 战吉艳, 刘建达等, 2013. 远场大地震作用下深软场地设计地震动参数研究. 岩土工程学报, 35(9): 1591−1599.

    Chen G. X., Zhan J. Y., Liu J. D., et al., 2013. Parameter study on ground motion design of deep soft site under far-field large earthquake. Chinese Journal of Geotechnical Engineering, 35(9): 1591−1599. (in Chinese)
    陈国兴, 朱翔, 赵丁凤等, 2019. 珊瑚岛礁场地非线性地震反应特征分析. 岩土工程学报, 41(3): 405−413. doi: 10.11779/CJGE201903001

    Chen G. X., Zhu X., Zhao D. F., et al., 2019. Nonlinear seismic response characteristics of a coral island site. Chinese Journal of Geotechnical Engineering, 41(3): 405−413. (in Chinese) doi: 10.11779/CJGE201903001
    陈国兴, 岳文泽, 阮滨等, 2021. 金塘海峡海床地震反应特征的二维非线性分析. 岩土工程学报, 43(11): 1967−1975. doi: 10.11779/CJGE202111002

    Chen G. X., Yue W. Z., Ruan B., et al., 2021. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang Strait. Chinese Journal of Geotechnical Engineering, 43(11): 1967−1975. (in Chinese) doi: 10.11779/CJGE202111002
    陈国兴, 夏高旭, 王彦臻等, 2022. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学, 39(5): 75−85. doi: 10.6052/j.issn.1000-4750.2021.03.0167

    Chen G. X., Xia G. X., Wang Y. Z., et al., 2022. One-dimensional nonlinear seismic response analysis for seabed site effect assessment in the Qiongzhou strait. Engineering Mechanics, 39(5): 75−85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0167
    陈洁, 朱守彪, 2020. 高阶交错网格和PML吸收边界在横向各向同性介质地震波场模拟中的应用. 地震地质, 42(3): 654−669. doi: 10.3969/j.issn.0253-4967.2020.03.008

    Chen J., Zhu S. B., 2020. The application of PML boundary coditions in the simulation of seismic wave by the high-order staggered-grid finite differences at the transversely isotropic media. Seismology and Geology, 42(3): 654−669. (in Chinese) doi: 10.3969/j.issn.0253-4967.2020.03.008
    陈龙伟, 冯浩, 袁晓铭, 2015. 基于单台强震数据软厚场地地震反应不确定性分析. 土木建筑与环境工程, 37(3): 35−41.

    Chen L. W., Feng H., Yuan X. M., 2015. Variability analysis of deep-soft site response using single-station strong-motion records. Journal of Civil, Architectural & Environmental Engineering, 37(3): 35−41. (in Chinese)
    陈三红, 2017. 基于等效线性化的场地地震反应分析基本问题研究. 北京: 中国地震局地球物理研究所.

    Chen S. H., 2017. Study on the basic problems of site seismic response based on equivalent linearization method. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese)
    陈少林, 常梦利, 2017. SH波斜入射时三维结构-土-结构相互作用分析. 地震工程与工程振动, 37(1): 81−90.

    Chen S. L., Chang M. L., 2017. Analysis of three-dimensional structure-soil-structure interaction subjected to inclined SH plane wave. Earthquake Engineering and Engineering Dynamics, 37(1): 81−90. (in Chinese)
    陈学良, 金星, 高孟潭, 2015. 近场速度脉冲场地响应等效线性分析的适用条件. 哈尔滨工程大学学报, 36(8): 1049−1056.

    Chen X. L., Jin X., Gao M. T., 2015. Applicable conditions of the near-field site response of a large velocity pulse by equivalent linearization method. Journal of Harbin Engineering University, 36(8): 1049−1056. (in Chinese)
    丁玉琴, 2010. 场地非线性地震反应分析方法及其应用研究. 重庆: 重庆大学.

    Ding Y. Q., 2010. Nonlinear seismic ground response analysis and implications for seismic codes implementation. Chongqing: Chongqing University. (in Chinese)
    董菲蕃, 陈国兴, 金丹丹, 2014. 泉州盆地地震效应特征的一维等效线性和二维非线性分析的比较. 防灾减灾工程学报, 34(2): 154−160.

    Dong F. F., Chen G. X., Jin D. D., 2014. Comparison between one-dimensional equivalent linear and two-dimensional nonlinear analysis on seismic effect of Quanzhou basin. Journal of Disaster Prevention and Mitigation Engineering, 34(2): 154−160. (in Chinese)
    董治平, 程建武, 2018. 中国8级地震时空活动特点. 国际地震动态, (4): 34−38.

    Dong Z. P., Cheng J. W., 2018. Characteristics of space-time activity of magnitude 8 earthquakes in China. Recent Developments in World Seismology, (4): 34−38. (in Chinese)
    高峰, 严松宏, 陈兴冲, 2003. 场地地震反应分析. 岩石力学与工程学报, 22(S2): 2789−2793.

    Gao F., Yan S. H., Chen X. C., 2003. Analyses on seismic responses of ground. Chinese Journal of Rock Mechanics and Engineering, 22(S2): 2789−2793. (in Chinese)
    高玉峰, 代登辉, 张宁, 2022. 翡翠河谷地震动地形效应解析分析. 地震学报, 44(1): 40−49. doi: 10.11939/jass.20210099

    Gao Y. F., Dai D. H., Zhang N., 2022. Analytical study on the topographic effect on ground motion of Feitsui canyon. Acta Seismologica Sinica, 44(1): 40−49. (in Chinese) doi: 10.11939/jass.20210099
    胡聿贤, 2006. 地震工程学. 2版. 北京: 地震出版社.

    Hu Y. X., 2006. Earthquake engineering. 2nd ed. Beijing: Seismological Press. (in Chinese)
    蒋通, 邢海灵, 2007. 水平土层地震反应分析考虑频率相关性的等效线性化方法. 岩土工程学报, 29(2): 218−224.

    Jiang T., Xing H. L., 2007. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis. Chinese Journal of Geotechnical Engineering, 29(2): 218−224. (in Chinese)
    金丹丹, 陈国兴, 董菲蕃, 2014. 多地貌单元复合场地非线性地震效应特征二维分析. 岩土力学, 35(6): 1818−1825.

    Jin D. D., Chen G. X., Dong F. F., 2014. 2D analysis of nonlinear seismic effect characteristics of multi-geomorphic composite site. Rock and Soil Mechanics, 35(6): 1818−1825. (in Chinese)
    金星, 孔戈, 丁海平, 2004. 水平成层场地地震反应非线性分析. 地震工程与工程振动, 24(3): 38−43. doi: 10.3969/j.issn.1000-1301.2004.03.005

    Jin X., Kong G., Ding H. P., 2004. Nonlinear seismic response analysis of horizontal layered site. Earthquake Engineering and Engineering Dynamics, 24(3): 38−43. (in Chinese) doi: 10.3969/j.issn.1000-1301.2004.03.005
    兰景岩, 吕悦军, 刘红帅, 2012. 地震动强度及频谱特征对场地地震反应分析结果的影响. 震灾防御技术, 7(1): 37−45. doi: 10.3969/j.issn.1673-5722.2012.01.004

    Lan J. Y., Lü Y. J., Liu H. S., 2012. Influence of intensity and frequency of ground motion on site earthquake response. Technology for Earthquake Disaster Prevention, 7(1): 37−45. (in Chinese) doi: 10.3969/j.issn.1673-5722.2012.01.004
    李建亮, 亢川川, 何玉林等, 2011. 场地条件对地面加速度峰值离散性的影响研究. 震灾防御技术, 6(4): 416−426. doi: 10.3969/j.issn.1673-5722.2011.04.007

    Li J. L., Kang C. C., He Y. L., et al., 2011. Effects of site condition on discreteness of ground peak accelerations. Technology for Earthquake Disaster Prevention, 6(4): 416−426. (in Chinese) doi: 10.3969/j.issn.1673-5722.2011.04.007
    李美娟, 夏雄, 2017. 软土夹层厚度对场地地震反应特征影响研究. 工程抗震与加固改造, 39(5): 149−153.

    Li M. J., Xia X., 2017. Research on the effect of soft clay interlayer thickness on ground seismic response characteristics. Earthquake Resistant Engineering and Retrofitting, 39(5): 149−153. (in Chinese)
    李天, 李杰, 1994. 具有随机参数的场地地震反应分析. 岩土工程学报, 16(5): 79−83. doi: 10.3321/j.issn:1000-4548.1994.05.010
    李天男, 2017. 珊瑚岛礁场地地震反应分析初探. 哈尔滨: 中国地震局工程力学研究所.

    Li T. N., 2017. Seismic response analysis of coral reef. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21−29.

    Li X. J., 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21−29. (in Chinese)
    李雪菊, 潘旦光, 石树中, 2023. 地震作用下二维场地模态叠加等效线性化方法. 工程力学, 40(10): 179−189. doi: 10.6052/j.issn.1000-4750.2022.01.0105

    Li X. J., Pan D. G., Shi S. Z., 2023. A modal-superposition-based equivalent linearization method for seismic response analysis of two-dimensional sites. Engineering Mechanics, 40(10): 179−189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.01.0105
    廖红建, 朱博鸿, 1991. 黄土场地的地面地震反应分析. 西安冶金建筑学院学报, 23(3): 331−338.

    Liao H. J., Zhu B. H., 1991. Seismic response analysis of the ground surface in loess site. Journal of Xi'an Institute of Metallurgical & Construction Engineering, 23(3): 331−338. (in Chinese)
    廖振鹏, 2002. 工程波动理论导论. 2版. 北京: 科学出版社.

    Liao Z. P., 2002. Introduction to wave motion theories in engineering. 2nd ed. Beijing: Science Press. (in Chinese)
    刘庆忠, 金丹丹, 陈国兴等, 2015. 河漫滩-阶地复合地形场地的非线性地震反应特征. 应用基础与工程科学学报, 23(1): 136−144.

    Liu Q. Z., Jin D. D., Chen G. X., et al, 2015. Nolinear seismic site response characteristics of composite site of alluvial flat and terraces. Journal of Basic Science and Engineering, 23(1): 136−144. (in Chinese)
    刘中宪, 刘明珍, 韩建斌, 2017. 近断层沉积盆地强地震动谱元模拟. 世界地震工程, 33(4): 76−86.

    Liu Z. X., Liu M. Z., Han J. B., 2017. Spectral-element simulation of strong ground motion in the near-fault alluvial basin. World Earthquake Engineering, 33(4): 76−86. (in Chinese)
    门玉明, 黄义, 刘增荣, 2001. 场地土的随机地震反应分析. 工程地质学报, 9(1): 68−73. doi: 10.3969/j.issn.1004-9665.2001.01.012

    Men Y. M., Huang Y., Liu Z. R., 2001. The random seismic response analysis of soil in site. Journal of Engineering Geology, 9(1): 68−73. (in Chinese) doi: 10.3969/j.issn.1004-9665.2001.01.012
    齐文浩, 薄景山, 2007. 土层地震反应等效线性化方法综述. 世界地震工程, 23(4): 221−226. doi: 10.3969/j.issn.1007-6069.2007.04.039

    Qi W. H., Bo J. S., 2007. Summarization on equivalent linear method of seismic responses for soil layers. World Earthquake Engineering, 23(4): 221−226. (in Chinese) doi: 10.3969/j.issn.1007-6069.2007.04.039
    申辉, 刘亚群, 刘博等, 2023. 地震波斜入射下岩质边坡放大效应的数值模拟研究. 岩土力学, 44(7): 2129−2142.

    Shen H., Liu Y. Q., Liu B., et al., 2023. Numerical study on the amplification effect of rock slopes under oblique incidence of seismic waves. Rock and Soil Mechanics, 44(7): 2129−2142. (in Chinese)
    盛兆琦, 胡进军, 谢礼立, 2023. 跨断层工程输入地震动模拟及其应用研究进展. 地震工程与工程振动, 43(1): 1−13.

    Sheng Z. Q., Hu J. J., Xie L. L., 2023. Review on the simulation of input ground motion for fault-crossing structure and its application. Earthquake Engineering and Engineering Dynamics, 43(1): 1−13. (in Chinese)
    盛志强, 卢育霞, 石玉成等, 2013. 河谷地形的地震反应分析. 地震工程学报, 35(1): 126−132, 202. doi: 10.3969/j.issn.1000-0844.2013.01.0126

    Sheng Z. Q., Lu Y. X., Shi Y. C., et al., 2013. Seismic response analysis of valley topography. China Earthquake Engineering Journal, 35(1): 126−132,202. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0126
    唐亮, 凌贤长, 徐鹏举, 等, 2010. 可液化场地桥梁群桩基础地震响应振动台试验研究. 岩土工程学报, 32(5): 672−680.

    Tang L., Ling X. Z., Xu P. J., et al., 2010. Shaking table test on seismic response of pile groups of bridges in liquefiable ground. Chinese Journal of Geotechnical Engineering, 32(5): 672−680. (in Chinese)
    王笃国, 赵成刚, 2019. 考虑频率参数协调的频率相关等效线性化方法. 工程力学, 36(9): 169−179.

    Wang D. G., Zhao C. G., 2019. Frequency-dependent equivalent linear method for seismic site response considering the compatibility of frequency parameters. Engineering Mechanics, 36(9): 169−179. (in Chinese)
    王笃国, 尤红兵, 张合等, 2021. 海域不同类别场地地震动参数变化规律研究. 震灾防御技术, 16(1): 116−122.

    Wang D. G., You H. B., Zhang H., 2021. Study on the change of earthquake ground motion parameters for different classification sites of ocean areas. Technology for Earthquake Disaster Prevention, 16(1): 116−122. (in Chinese)
    夏坤, 2018. 汶川地震黄土场地地震反应特征分析. 哈尔滨: 中国地震局工程力学研究所.

    Xia K., 2018. Earthquake response characteristics of loess sites in Wenchuan earthquake. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    严松宏, 陈兴冲, 高峰, 2005. 多年冻土区场地地震动随机特性研究. 岩土工程学报, 27(9): 1012−1015.

    Yan S. H., Chen X. C., Gao F., 2005. Study on stochastic earthquake characteristics of ground in permafrost regions. Chinese Journal of Geotechnical Engineering, 27(9): 1012−1015. (in Chinese)
    鄢兆伦, 彭小波, 2021. 场地地震反应的特征线解与等效线性化解对比研究. 防灾减灾工程学报, 41(6): 1222−1227, 1247.

    Yan Z. L., Peng X. B., 2021. Comparison study on results of site seismic response between characteristic-difference method and equivalent linear method. Journal of Disaster Prevention and Mitigation Engineering, 41(6): 1222−1227,1247. (in Chinese)
    杨柏坡, 杨笑梅, 1997. 复杂场地上结构地震反应的研究. 地震工程与工程振动, (2): 10−15.

    Yang B. P., Yang X. M., 1997. Seismic response of structures on complex sites. Earthquake Engineering and Engineering Vibration, (2): 10−15. (in Chinese)
    杨笑梅, 赖强林, 2017. 二维土层地震反应分析的时域等效线性化解法. 岩土力学, 38(3): 847−856.

    Yang X. M., Lai Q. L., 2017. Time-domain equivalent linearization method for two-dimensional seismic response analysis. Rock and Soil Mechanics, 38(3): 847−856. (in Chinese)
    尤红兵, 赵凤新, 荣棉水, 2009. 地震波斜入射时水平层状场地的非线性地震反应. 岩土工程学报, 31(2): 234−240.

    You H. B., Zhao F. X., Rong M. S., 2009. Nonlinear seismic response of horizontal layered site due to inclined wave. Chinese Journal of Geotechnical Engineering, 31(2): 234−240. (in Chinese)
    禹海涛, 王治坤, 张中杰, 等, 2024. 近河谷地铁车站振动台模型试验研究. 岩土工程学报, 46(9): 1800−1808.

    Yu H. T., Wang Z. K., Zhang Z. J., et al., 2024. Shaking table tests on a near-valley subway station. Chinese Journal of Geotechnical Engineering, 46(9): 1800−1808. (in Chinese)
    于生生, 张熙胤, 陈兴冲等, 2021. 场地地震反应分析研究现状及展望. 防灾减灾工程学报, 41(1): 181−192.

    Yu S. S., Zhang X. Y., Chen X. C., et al., 2021. Present research situation and prospect on analysis of site seismic response. Journal of Disaster Prevention and Mitigation Engineering, 41(1): 181−192. (in Chinese)
    张季, 梁建文, 巴振宁, 2016. 水平层状饱和场地地震响应分析的等效线性化方法. 工程力学, 33(10): 52−61. doi: 10.6052/j.issn.1000-4750.2015.03.0215

    Zhang J., Liang J. W., Ba Z. N., 2016. Equivalent linear analysis of seismic response of horizontally layered fluid-saturated poroelastic half-space. Engineering Mechanics, 33(10): 52−61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0215
    张巍, 孙锐, 袁晓铭, 2020. 珊瑚岛礁海域场地地震反应分析. 地震研究, 43(3): 576−581. doi: 10.3969/j.issn.1000-0666.2020.03.021

    Zhang W., Sun R., Yuan X. M., 2020. Seismic response analysis of a coral island in sea area. Journal of Seismological Research, 43(3): 576−581. (in Chinese) doi: 10.3969/j.issn.1000-0666.2020.03.021
    章文波, 谢礼立, 郭明珠, 2001. 利用强震记录分析场地的地震反应. 地震学报, 23(6): 604−614.

    Zhang W. B., Xie L. L., Guo M. Z., 2001. Estimation on site-amplification from different methods using strong motion data obtained in Tangshan, China. Acta Seismologica Sinica, 23(6): 604−614. (in Chinese)
    张岩, 陈国兴, 赵凯等, 2024. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学, 49(11): 4225−4237.

    Zhang Y., Chen G. X., Zhao K., et al., 2024. Non-stationary random field simulation method of seabed site shear wave velocity structures considering stratigraphy variation and nonlinear trend. Earth Science, 49(11): 4225−4237. (in Chinese)
    张彦, 程鹏, 赵瑞斌等, 2024. 二维饱和沉积盆地地震动响应非线性分析. 震灾防御技术, 19(1): 1−13.

    Zhang Y., Cheng P., Zhao R. B., et al., 2024. Nonlinear seismic response analysis of two-dimensional depositional basins. Technology for Earthquake Disaster Prevention, 19(1): 1−13. (in Chinese)
    张震, 2020. 场地地震反应一维数值分析方法对比分析. 廊坊: 防灾科技学院.

    Zhang Z., 2020. Comparison on one dimension numerical methods of site seismic response analysis. Langfang: Institute of Disaster Prevention. (in Chinese)
    张中杰, 禹海涛, 宋毅等, 2024. 圆形河谷地形效应振动台模型试验研究. 岩土工程学报, 46(5): 1102−1111.

    Zhang Z. J., Yu H. T., Song Y., et al., 2024. Shaking table tests on topographic effects of circular-arc valleys. Chinese Journal of Geotechnical Engineering, 46(5): 1102−1111. (in Chinese)
    张梓鸿, 闫冠宇, 许成顺等, 2025. 基于可液化场地离心机振动台试验的地下结构地震响应研究. 岩土工程学报, 47(2): 324−336.

    Zhang Z. H., Yan G. Y., Xu C. S., et al., 2025. Seismic responses of underground structures based on centrifuge shaking table test in liquefiable site. Chinese Journal of Geotechnical Engineering, 47(2): 324−336. (in Chinese)
    赵松戈, 胡聿贤, 廖旭, 2000. 土层参数的随机性对场地传递函数的影响. 地震工程与工程振动, 20(2): 7−12.

    Zhao S. G., Hu Y. X., Liao X., 2000. Effect of soil parameter variations on soil transfer function. Earthquake Engineering and Engineering Vibration, 20(2): 7−12. (in Chinese)
    钟紫蓝, 史跃波, 李锦强等, 2022. 考虑土体动力特征参数相关性的工程场地随机地震反应分析. 岩土力学, 43(7): 2015−2024, 2033.

    Zhong Z. L., Shi Y. B., Li J. Q., et al., 2022. Stochastic seismic response analysis of engineering site considering correlations of critical soil dynamic parameters. Rock and Soil Mechanics, 43(7): 2015−2024,2033. (in Chinese)
    周星源, 彭艳菊, 方怡等, 2021. 渤海海域软土层土对地震动参数的影响研究. 震灾防御技术, 16(1): 91−104. doi: 10.11899/zzfy20210110

    Zhou X. Y., Peng Y. J., Fang Y., et al., 2021. Investigation on the effect of surface soft soil on seismic ground motion parameter in Bohai Sea, China. Technology for Earthquake Disaster Prevention, 16(1): 91−104. (in Chinese) doi: 10.11899/zzfy20210110
    周燕国, 马强, 刘凯等, 2024. 地震液化离心机振动台模型试验与LEAP研究进展. 岩土工程学报, 46(1): 54−62. doi: 10.11779/CJGE20221213

    Zhou Y. G., Ma Q., Liu K., et al., 2024. Centrifugal shaking table tests on soil liquefaction and progress of LEAP projects. Chinese Journal of Geotechnical Engineering, 46(1): 54−62. (in Chinese) doi: 10.11779/CJGE20221213
    杉戸真太, 合田尚義, 増田民夫, 1994. 周波数特性を考慮した等価ひずみによる地盤の地震応答解析法に関する一考察. 土木学会論文集, 493(III-27): 49−58.

    Sugito M., Goda H., Masuda T., 1994. Frequency dependent equi-linearized technique for seismic response analysis of multi-layered ground. Japanese Journal of JSCE, 493(III-27): 49−58. (in Japanese
    野津厚, 林公美, 菅野高弘, 2005. 港湾地域強震観測の概要. 见: 記念シンポジウム「日本の強震観測50年」-歴史と展望-講演集. 筑波: 防災科学技術研究所研究資料, 29−32.

    Nozu A., Hayash K., Sugano T., 2005. Outline of the strong motion earthquake observation in Japanese ports. In: Proceedings of the Symposium, the 50th Anniversary of Strong-Motion Earthquake Observation in Japan - History and Perspective, Technical Note of the National Research Institute for Earth Science and Disaster Prevention, National Research Institute for Earth Science and Disaster Prevention: Tsukuba, 29−32. (in Japanese
    Abraham J. R., Smerzini C., Paolucci R., et al., 2016. Numerical study on basin-edge effects in the seismic response of the Gubbio valley, Central Italy. Bulletin of Earthquake Engineering, 14(6): 1437−1459. doi: 10.1007/s10518-016-9890-y
    Acunzo G., Falcone G., di Lernia A., et al., 2024. NC92Soil: a computer code for deterministic and stochastic 1D equivalent linear seismic site response analyses. Computers and Geotechnics, 165: 105857. doi: 10.1016/j.compgeo.2023.105857
    Akter S., 2022. Seismic ground response analysis of input earthquake motion and site amplification factor at KUET. Journal of the Civil Engineering Forum, 8(1): 45−54. doi: 10.28991/CEJ-2022-08-01-04
    Bao X., Liu J. B., Chen S., et al., 2022. Seismic analysis of the reef-seawater system: comparison between 3D and 2D models. Journal of Earthquake Engineering, 26(6): 3109−3122. doi: 10.1080/13632469.2020.1785976
    Chen G. X., Wang Y. Z., Zhao D. F., et al., 2021. A new effective stress method for nonlinear site response analyses. Earthquake Engineering & Structural Dynamics, 50(6): 1595−1611.
    Dobry R., Ladd R. S., Yokel F. Y., et al., 1982. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. In: National Bureau of Standards Building Science Series 138. Washington, D. C. : National Bureau of Standards, Department of Commerce.
    Farrokhzad F., Choobbasti A. J., 2016. Empirical correlations of shear wave velocity ( $ {V}_{s} $ ) and standard penetration resistance based on soil type in Babol city. Indian Journal of Geo Marine Scierces, 45(11): 1566−1577.
    Frankel A. D., Carver D. L., Williams R. A., 2002. Nonlinear and linear site response and basin effects in Seattle for the M6.8 Nisqually, Washington, earthquake. Bulletin of the Seismological Society of America, 92(6): 2090−2109. doi: 10.1785/0120010254
    Hailemikael S., Lenti L., Martino S., et al., 2016. Ground-motion amplification at the Colle di Roio ridge, central Italy: a combined effect of stratigraphy and topography. Geophysical Journal International, 206(1): 1−18. doi: 10.1093/gji/ggw120
    Hartzell S., Cranswick E., Frankel A., et al., 1997. Variability of site response in the Los Angeles urban area. Bulletin of the Seismological Society of America, 87(6): 1377−1400. doi: 10.1785/BSSA0870061377
    Hashash Y. M. A., Phillips C., Groholski D. R., 2010. Recent advances in non-linear site response analysis. Rolla: Missouri University of Science and Technology.
    Housner G. W., 1947. Characteristics of strong-motion earthquakes. Bulletin of the Seismological Society of America, 37(1): 19−31. doi: 10.1785/BSSA0370010019
    Hu H. Q., Huang Y., 2019. PDEM-based stochastic seismic response analysis of sites with spatially variable soil properties. Soil Dynamics and Earthquake Engineering, 125: 105736. doi: 10.1016/j.soildyn.2019.105736
    Idriss I. M., Seed H. B., 1968. Seismic response of horizontal soil layers. Journal of the Soil Mechanics and Foundations Division, 94(4): 1003−1031. doi: 10.1061/JSFEAQ.0001163
    Idriss I. M., Lysmer J., Hwang R., et al., 1973. QUAN-4: a computer program for evaluating the seismic response of soil structures by variable damping finite element procedures. Berkeley: University of California.
    Inkersley A., 1906. Effects of the earthquake and fire upon the city of San Francisco and its buildings. Scientific American, 94(20): 418.
    Jin X., Liao Z. P., 1994. Statistical research on S-wave incident angle. Earthquake Research in China, 8(1): 121−131.
    Kausel E., Assimaki D., 2002. Seismic simulation of inelastic soils via frequency-dependent moduli and damping. Journal of Engineering Mechanics, 128(1): 34−47. doi: 10.1061/(ASCE)0733-9399(2002)128:1(34)
    Kramer S. L., Elgamal A. W., 2001. Modeling soil liquefaction hazards for performance-based earthquake engineering. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
    Liu J. B., Bao X., Wang D. Y., et al., 2019. Seismic response analysis of the reef-seawater system under incident SV wave. Ocean Engineering, 180: 199−210. doi: 10.1016/j.oceaneng.2019.03.068
    Liu W. X., Juang C. H., Chen Q. S., et al., 2021. Dynamic site response analysis in the face of uncertainty–an approach based on response surface method. International Journal for Numerical and Analytical Methods in Geomechanics, 45(12): 1854−1867. doi: 10.1002/nag.3245
    Liu W. X., Chen Q. S., Juang C. H., et al., 2023a. Uncertainty propagation of soil property in dynamic site response under different site conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 47(9): 1521−1538. doi: 10.1002/nag.3526
    Liu Z. X., Qiao Y. F., Cheng X. L., et al., 2023b. IBEM-FEM coupling method for full process nonlinear ground motion simulation of near-fault sedimentary basins. Soil Dynamics and Earthquake Engineering, 170: 107916. doi: 10.1016/j.soildyn.2023.107916
    Pitilakis D., Dietz M., Wood D. M., et al., 2008. Numerical simulation of dynamic soil-structure interaction in shaking table testing. Soil Dynamics and Earthquake Engineering, 28(6): 453−467. doi: 10.1016/j.soildyn.2007.07.011
    Rathje E. M., Kottke A. R., Trent W. L., 2010. Influence of input motion and site property variabilities on seismic site response analysis. Journal of Geotechnical and Geoenvironmental Engineering, 136(4): 607−619. doi: 10.1061/(ASCE)GT.1943-5606.0000255
    Singh S. K., Mena E., Castro R., 1988. Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data. Bulletin of the Seismological Society of America, 78(2): 451−477.
    Tabatabaiefar S. H. R., Fatahi B., Samali B., 2014. Numerical and experimental investigations on seismic response of building frames under influence of soil-structure interaction. Advances in Structural Engineering, 17(1): 109−130. doi: 10.1260/1369-4332.17.1.109
    Tombari A., Stefanini L., 2019. Hybrid fuzzy – stochastic 1D site response analysis accounting for soil uncertainties. Mechanical Systems and Signal Processing, 132: 102−121. doi: 10.1016/j.ymssp.2019.06.005
    Wang H. X., Wang F. B., Yang H., et al., 2023. Site response analysis: uncertain motions propagating through uncertain elastoplastic soil. Nuclear Engineering and Design, 415: 112706. doi: 10.1016/j.nucengdes.2023.112706
    Wilson D. W., 1998. Soil-Pile-Superstructure interaction in liquefying sand and soft clay. Davis: University of California.
    Wu S. L., Nozu A., Nagasaka Y., et al., 2023. Equivalent linear method with complex frequency for response analyses of the ground subject to fling-step displacements. Soil Dynamics and Earthquake Engineering, 166: 107784. doi: 10.1016/j.soildyn.2023.107784
    Xiong M., Chen Z. Y., Huang Y., 2023. Nonlinear stochastic seismic dynamic response analysis of submerged floating tunnel subjected to non-stationary ground motion. International Journal of Non-Linear Mechanics, 148: 104270. doi: 10.1016/j.ijnonlinmec.2022.104270
    Yoshida N., Kobayashi S., Suetomi I., et al., 2002. Equivalent linear method considering frequency dependent characteristics of stiffness and damping. Soil Dynamics and Earthquake Engineering, 22(3): 205−222. doi: 10.1016/S0267-7261(02)00011-8
    Zhong Z. L., Ni B., Shi Y. B., et al., 2023. Convolutional neural network-based seismic fragility analysis of subway station structure considering spatial variation of site shear-wave velocity. Computers and Geotechnics, 163: 105741. doi: 10.1016/j.compgeo.2023.105741
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 录用日期:  2025-01-17
  • 修回日期:  2024-12-18
  • 网络出版日期:  2025-09-19

目录

    /

    返回文章
    返回