Study on the Propagation and Wave Pressure Distribution of Landslide Surge Waves in Reservoirs under the Influence of Water Flow
-
摘要: 西部山区由于其地形地势特点,极易发生地震滑坡等灾害,滑坡体高速入水产生涌浪,对建筑结构造成巨大危害。本文基于计算流体动力学(CFD)的FLUENT软件,建立了滑坡涌浪三维数值模型,通过已有的物理模型试验验证了该数值方法的有效性,进一步探讨了水流动力作用下滑坡涌浪的传播规律及动水压力的变化规律。数值模拟结果表明,考虑水流作用后,涌浪波高的变化随着流速的增加而增大,流速0.5m/s时波高约为无水流的3倍;不同测点处首浪动水压强最大值、以及动水压差会不同程度受水流作用的影响,动水压差最大能达到600Pa;当滑坡体的宽度增加1倍时,波压波动的相对变化增加了15%;滑坡体滑速增大1m/s时,波压波动的相对变化增加了约17%。Abstract: The mountainous regions in western China are highly susceptible to disasters such as earthquakes and landslides due to their complex topography. When landslide masses rapidly enter water, they generate surge waves that pose significant threats to structural safety. Using the computational fluid dynamics (CFD) software FLUENT, this study establishes a three-dimensional numerical model of landslide-induced surge waves. Validated by existing physical model experiments, the numerical simulation reveals that water flow significantly amplifies surge wave dynamics. For instance, at a flow velocity of 0.5 m/s, the wave height triples compared to scenarios without water flow. The maximum dynamic water pressure and pressure differences at various measurement points are influenced by water flow, with the maximum pressure difference reaching 600 Pa. Furthermore, doubling the landslide width increases wave pressure fluctuations by 15%, while a 1 m/s rise in landslide velocity leads to a 17% increase in pressure fluctuations....
-
Key words:
- Landslide surge /
- Water flow dynamics /
- CFD /
- Dynamic water pressure /
- Water surface elevation
-
表 1 网格参数
Table 1. Grid parameters
编号 网格尺寸D/m 局部尺寸d/m 单元数 节点数 最低高程/m 1 0.2 0.08 89859 17979 − 0.1606 2 0.15 0.06 181858 35458 − 0.1382 3 0.1 0.05 418927 80929 − 0.1446 4 0.08 0.04 721392 137417 − 0.1459 表 2 不同水流速度
Table 2. Different water flow velocities
编号 V0 V1 V2 V3 V4 V5 速度/(m·s−1) 0 0.1 0.2 0.3 0.4 0.5 表 3 高程测点布置
Table 3. Layout of Measurement Points
测点编号 x/m y/m z/m C1 0.64 — 0.86 C2 0.64 — 1.24 C3 0.64 — 1.83 C4 0.64 — 2.74 表 4 压强测点布置
Table 4. Layout of Pressure Measurement Points
测点 编号 x/m y/m z/m 测点 编号 x/m y/m z/m C5 0.25 −0.5 3 C13 −0.75 −0.5 3 C6 0.5 −0.5 3 C14 −1 −0.5 3 C7 0.75 −0.5 3 C15 −1.5 −0.5 3 C8 1 −0.5 3 C16 −1.75 −0.5 3 C9 1.5 −0.5 3 C17 1.5 −0.25 3 C10 1.75 −0.5 3 C18 1.5 −0.5 3 C11 −0.25 −0.5 3 C19 1.5 −0.75 3 C12 −0.5 −0.5 3 C20 1.5 −1 3 -
代云霞, 殷坤龙, 汪洋, 2008. 滑坡速度计算及涌浪预测方法探讨. 岩土力学, 29(S1): 407−411.Dai Y. X., Yin K. L., Wang Y., 2008. Discussion on method of landslide velocity calculation and surge prediction. Rock and Soil Mechanics, 29(S1): 407−411. (in Chinese) 邓成进, 党发宁, 陈兴周, 2019. 库区滑坡涌浪传播及其与大坝相互作用机理研究. 水利学报, 50(7): 815−823.Deng C. J., Dang F. N., Chen X. Z., 2019. Study on the surge wave propagation in the reservoir area and its interaction mechanism with the dam. Journal of Hydraulic Engineering, 50(7): 815−823. (in Chinese) 丁俊杰, 2019. 考虑波流相互作用的数值水槽及循环水槽消波装置开发研究. 上海: 上海交通大学.Ding J. J., 2019. The development and applications of a numerical wave tank considering wave-current interaction. Shanghai: Shanghai Jiao Tong University. (in Chinese) 高云朋, 2016. 基于非静压波流模型的浅水区域波浪水流相互作用的数值研究. 大连: 大连理工大学.Gao Y. P., 2016. The investigation on wave-current interaction in shallow water based on a non-hydrostatic wave-current model. Dalian: Dalian University of Technology. (in Chinese) 胡捍红, 2012. 考虑波流干扰的深水畸形波数值模拟研究. 上海: 上海交通大学.Hu H. H., 2012. Numerical simulation of rogue waves in deep water considering wave/current interaction. Shanghai: Shanghai Jiao Tong University. (in Chinese) 胡朋, 李永乐, 廖海黎, 2012. 基于SST k-ω湍流模型的平衡大气边界层模拟. 空气动力学学报, 30(6): 737−743.Hu P., Li Y. L., Liao H. L., 2012. Simulation of equilibrium atmosphere boundary layer with SST k-ω turbulence model. Acta Aerodynamica Sinica, 30(6): 737−743. (in Chinese) 黄锦林, 付波, 黄智敏等, 2013. 直立坝前滑坡涌浪压力荷载计算模式探讨. 水力发电学报, 32(6): 135−140.Huang J. L., Fu B., Huang Z. M., et al., 2013. Discussion on calculation model of landslide surge pressure load on the front of upright dam. Journal of Hydroelectric Engineering, 32(6): 135−140. (in Chinese) 荆海晓, 陈国鼎, 李国栋, 2018. 水下滑坡产生涌浪波特性的数值模拟研究. 应用力学学报, 35(3): 503−509.Jing H. X., Chen G. D., Li G. D., 2018. Numerical study on characteristics of water waves generated by submerged landslide. Chinese Journal of Applied Mechanics, 35(3): 503−509. (in Chinese) 李静, 陈健云, 徐强等, 2018. 滑坡涌浪对坝面冲击压力的影响因素研究. 水利学报, 49(2): 232−240.Li J., Chen J. Y., Xu Q., et al., 2018. Study on the influence factors of landslide surge wave on the impact pressure on dam's surface. Journal of Hydraulic Engineering, 49(2): 232−240. (in Chinese) 廖秋林, 李晓, 李守定等, 2005. 三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究. 岩石力学与工程学报, 24(17): 3146−3153. doi: 10.3321/j.issn:1000-6915.2005.17.023Liao Q. L., Li X., Lee S., et al., 2005. Occurrence, geology and geomorphy characteristics and origin of Qianjiangping landslide in three gorges reservoir area and study on ancient landslide criterion. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3146−3153. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.023 秦楠, 鲁传敬, 李杰, 2013. 数值波流水池构造方法研究. 水动力研究与进展, 28(3): 349−356.Qin N., Lu C. J., Li J., 2013. Research on the method of constructing a numerical wave-current flume. Chinese Journal of Hydrodynamics, 28(3): 349−356. (in Chinese) 邱昕, 2015. 高速远程滑坡-碎屑流及其涌浪数值模拟分析. 上海: 上海交通大学.Qiu X., 2015. Numerical simulation on the process of typic rock avalanche and associated water waves. Shanghai: Shanghai Jiao Tong University. (in Chinese) 肖莉丽, 王佳佳, 李枝强等, 2022. 考虑滑体–水体相互作用的滑坡涌浪产生过程动力学模型研究. 岩石力学与工程学报, 41(12): 2404−2416.Xiao L. L., Wang J. J., Li Z. Q., et al., 2022. Research on dynamic models of landslide tsunami generation considering slide/water interactions. Chinese Journal of Rock Mechanics and Engineering, 41(12): 2404−2416. (in Chinese) 徐文杰, 2020. 滑坡涌浪流–固耦合分析方法与应用. 岩石力学与工程学报, 39(7): 1420−1433.Xu W. J., 2020. Fluid-solid coupling method of landslide tsunamis and its application. Chinese Journal of Rock Mechanics and Engineering, 39(7): 1420−1433. (in Chinese) 薛宏程, 马倩, 彭杏瑶等, 2023. 基于Herschel-Bulkley流变模型的滑坡涌浪数值模拟方法研究. 水利学报, 54(3): 268−278.Xue H. C., Ma Q., Peng X. Y., et al., 2023. Numerical simulation of landslide generated impulse waves based on Herschel-Bulkley rheological model. Journal of Hydraulic Engineering, 54(3): 268−278. (in Chinese) 岳书波, 刁明军, 王磊, 2016. 滑坡涌浪的初始形态及其衰减规律的研究. 水利学报, 47(6): 816−825.Yue S. B., Diao M. J., Wang L., 2016. Research on initial formation and attenuation of landslide-generated waves. Journal of Hydraulic Engineering, 47(6): 816−825. (in Chinese) 张志鸿, 彭杨, 罗诗琦等, 2022. 移动网格下黄河下游游荡段二维水沙数值模拟. 水力发电学报, 41(8): 30−41.Zhang Z. H., Peng Y., Luo S. Q., et al., 2022. Two-dimensional numerical simulations of water-sediment transport in lower Yellow River wandering reach based on moving grids. Journal of Hydroelectric Engineering, 41(8): 30−41. (in Chinese) 赵兰浩, 杨庆庆, 李同春, 2011. 地震作用下土质库岸边坡失稳运动及初始涌浪数值模拟方法. 水力发电学报, 30(6): 104−108.Zhao L. H., Yang Q. Q., Li T. C., 2011. Numerical simulation of landsliding and initial surges for soil banks of reservoir under earthquake action. Journal of Hydroelectric Engineering, 30(6): 104−108. (in Chinese) 郑晨辉, 2023. 深水区桥梁波流及地震响应研究. 西安: 长安大学. Zheng C. H., 2023. Study on wave-current and seismic response of bridges in deep water area. Xi’an: Chang'an University. 郑飞东, 王平义, 李云, 2022. 滑坡体散体化对涌浪波动特征的影响. 水科学进展, 33(5): 826−834.Zheng F. D., Wang P. Y., Li Y., 2022. Effect of landslide disintegration on free-surface characteristics of landslide-generated waves. Advances in Water Science, 33(5): 826−834. (in Chinese) 郑莉, 杜娟, 刘庆丽等, 2022. 水库滑坡涌浪动压力特征试验研究. 安全与环境工程, 29(2): 85−94.Zheng L., Du J., Liu Q. L., et al., 2022. Experimental research on dynamic pressure characteristics of reservoir landslide-induced surge. Safety and Environmental Engineering, 29(2): 85−94. (in Chinese) 周桂云, 李同春, 钱七虎, 2013. 水库滑坡涌浪传播有限元数值模拟. 岩土力学, 34(4): 1197−1201, 1210.Zhou G. Y., Li T. C., Qian Q. H., 2013. Finite element numerical simulation of water waves due to reservoir landslides. Rock and Soil Mechanics, 34(4): 1197−1201,1210. (in Chinese) Chou C. R., Yan S. S., Fang H. M., 1997. Wave height distributions around submerged structure in wave-current field. Engineering Analysis with Boundary Elements, 20(1): 45−49. doi: 10.1016/S0955-7997(97)00044-1 Du W. J., Sheng Q., Fu X. D., et al., 2021. Extensions of the two-phase double-point material point method to simulate the landslide-induced surge process. Engineering Analysis with Boundary Elements, 133: 362−375. doi: 10.1016/j.enganabound.2021.09.020 Feng X. R., Yin B. S., Yang D. Z., 2016. Development of an unstructured-grid wave-current coupled model and its application. Ocean Modelling, 104: 213−225. doi: 10.1016/j.ocemod.2016.06.007 Fritz H. M., Hager W. H., Minor H. E., 2004. Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6): 287−302. Ghadirian A., Vested M. H., Carstensen S., et al., 2021. Wave-current interaction effects on waves and their loads on a vertical cylinder. Coastal Engineering, 165: 103832. doi: 10.1016/j.coastaleng.2020.103832 Kumar A., Hayatdavoodi M., 2023. Effect of currents on nonlinear waves in shallow water. Coastal Engineering, 181: 104278. doi: 10.1016/j.coastaleng.2023.104278 Lin P. Z., Liu X., Zhang J. M., 2015. The simulation of a landslide-induced surge wave and its overtopping of a dam using a coupled ISPH model. Engineering Applications of Computational Fluid Mechanics, 9(1): 432−444. doi: 10.1080/19942060.2015.1048620 Liu J., Zhou C. L., Guo J., et al., 2021. Experimental study of landslide surge wave overtopping an earth dam. Arabian Journal for Science and Engineering, 46(1): 563−571. doi: 10.1007/s13369-020-04933-5 Liu P. L. F., Wu T. R., Raichlen F., 2005. Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 536: 107−144. doi: 10.1017/S0022112005004799 Tan H., Chen S. H., 2017. A hybrid DEM-SPH model for deformable landslide and its generated surge waves. Advances in Water Resources, 108: 256−276. doi: 10.1016/j.advwatres.2017.07.023 Wang D. P., Zhou Y., 2021. Dam-break dynamics at Huohua Lake following the 2017 MW 6.5 Jiuzhaigou earthquake in Sichuan, China. Engineering Geology, 289: 106145. doi: 10.1016/j.enggeo.2021.106145 Wang R. B., Ding M. G., Wang Y. Z., et al., 2022. Field characterization of landslide-induced surge waves based on computational fluid dynamics. Frontiers in Physics, 9: 813827. doi: 10.3389/fphy.2021.813827 Yim S. C., Yuk D., Panizzo A., et al., 2008. Numerical simulations of wave generation by a vertical plunger using RANS and SPH models. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(3): 143−159. Yu G., Zhou X. W., Bu L., et al., 2023. GIS-based calculation method of surge height generated by three-dimensional landslide. Scientific Reports, 13(1): 7684. doi: 10.1038/s41598-023-34798-1 Zhang J., Lou Y. B., 2024. Study of wave-current coupling on offshore flexible photovoltaic foundation columns. Frontiers in Marine Science, 11: 1387353. doi: 10.3389/fmars.2024.1387353 Zhao H. X., Yao L. K., Wang B. L., et al., 2018. Surge waves under earthquake and clastic flow landslide. Journal of Earthquake and Tsunami, 12(3): 1850009. doi: 10.1142/S1793431118500094 -