• ISSN 1673-5722
  • CN 11-5429/P

混杂纤维对跨蠕滑逆断层隧道衬砌抗错断性能的影响

廖云洋 张恒 廖如鹏 汪优 李苇航

廖云洋,张恒,廖如鹏,汪优,李苇航,2025. 混杂纤维对跨蠕滑逆断层隧道衬砌抗错断性能的影响. 震灾防御技术,20(3):1−12. doi:10.11899/zzfy20240166. doi: 10.11899/zzfy20240166
引用本文: 廖云洋,张恒,廖如鹏,汪优,李苇航,2025. 混杂纤维对跨蠕滑逆断层隧道衬砌抗错断性能的影响. 震灾防御技术,20(3):1−12. doi:10.11899/zzfy20240166. doi: 10.11899/zzfy20240166
Liao Yunyang, Zhang Heng, Liao Rupeng, Wang You, Li Weihang. Impact of Hybrid Fibers on the Fault-Resistance Performance of Tunnel Linings Crossing Creeping Reverse Faults[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240166
Citation: Liao Yunyang, Zhang Heng, Liao Rupeng, Wang You, Li Weihang. Impact of Hybrid Fibers on the Fault-Resistance Performance of Tunnel Linings Crossing Creeping Reverse Faults[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy20240166

混杂纤维对跨蠕滑逆断层隧道衬砌抗错断性能的影响

doi: 10.11899/zzfy20240166
基金项目: 国家自然科学基金(51778633);中国铁建股份有限公司2022年度科技研究开发计划及资助课题(2022-C1);国家留学基金管理委员会(202306370268);2022度广州地铁设计研究院股份有限公司科研立项项目(KY-2022-014);中铁二局集团有限公司科技研究开发计划课题(2022-B-4)
详细信息
    作者简介:

    廖云洋,男,生于1976年。高级工程师。E-mail:234811166@csu.edu.cn

    通讯作者:

    汪优,女,生于1978年。副教授。E-mail:ywang1920@csu.edu.cn

Impact of Hybrid Fibers on the Fault-Resistance Performance of Tunnel Linings Crossing Creeping Reverse Faults

  • 摘要: 位于断层蠕滑错动地段的隧道存在结构破坏风险,钢-聚丙烯混杂纤维能显著改善混凝土韧性,有效减缓断层错动带来的衬砌裂缝延展,但相关研究较少。在修正既有钢-聚丙烯混杂纤维混凝土本构模型基础上,基于Najar公式计算损伤变量,使用ABAQUS建立跨蠕滑逆断层隧道三维模型,对不同断层错动量下,不同纤维类型、掺量的混凝土衬砌力学性能和损伤开展研究。结果表明,断层倾角为60°时,不同错动量和纤维参数下隧道衬砌的受影响范围均为以错动带为中心的100 m,拱顶最大主应力和纵向应变极值、拱脚剪应变和拉压损伤极值最大;掺入适量纤维能明显增强衬砌力学性能并减少损伤,且混掺效果较单掺更优;混掺纤维时,在一定范围内提高某种纤维掺量能更有效地改善衬砌力学性能和损伤,并削弱拱顶最大主应力、加强拱脚受压损伤对另一种纤维掺量的敏感性;断层竖向错动不超过30 cm时,掺入适量混杂纤维可较好地满足衬砌受力变形及损伤需求,超过30 cm后可结合其他防错断措施。
  • 图  1  单轴受拉曲线与试验结果对比

    Figure  1.  Uniaxial tension curve compared with the test results

    图  2  单轴受压曲线与试验结果对比

    Figure  2.  Uniaxial compression curve compared with the test results

    图  3  Najar损伤理论

    Figure  3.  Najar injury theory

    图  4  分离式双线单洞隧道(单位:厘米)

    Figure  4.  Detached double-lane single-hole tunnel (Unit: cm)

    图  5  基本模型示意图

    Figure  5.  Schematic diagram of the base model

    图  6  断层模拟约束设置

    Figure  6.  Fault simulation constraint settings

    图  7  衬砌顶部竖向位移对比

    Figure  7.  Comparison of the vertical displacement of the top of the lining

    图  8  二次衬砌关键监测点

    Figure  8.  Secondary lining key monitoring points

    图  9  衬砌各部位力学性能及损伤分布

    Figure  9.  Mechanical properties and damage distribution of parts of lining

    图  10  衬砌关键部位力学性能及损伤极值

    Figure  10.  Mechanical properties and damage extremes of lining key components

    图  11  纤维掺量变化时衬砌关键部位力学性能及损伤极值

    Figure  11.  The mechanical properties and damage extremes of key parts of the lining when the fiber content changes

    图  12  不同错动位移下不掺、混掺纤维衬砌关键部位力学性能及损伤极值

    Figure  12.  Mechanical properties and damage extremes of key parts of unadulterated and mixed fiber lining under different misalignment displacements

    表  1  材料参数

    Table  1.   Material parameters

    材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 黏聚力/MPa 摩擦角/(°)
    Ⅳ级围岩 2200 7 0.3 0.5 35
    断层破碎带 2000 5 0.3 0.25 25
    初期支护C25 2400 27.5 0.2 12.5 31
    二次衬砌C30 2500 29 0.25
    下载: 导出CSV

    表  2  纤维参数取值表

    Table  2.   Fiber parameter value table

    纤维类型掺量
    钢纤维0.5%1.2%1.9%
    聚丙烯纤维0.05%0.1%0.15%
    下载: 导出CSV

    表  3  单掺、混掺相较于素混凝土的指标变化幅度

    Table  3.   The index change range of single blending and mixed blending compared with plain concrete

    力学性能及损伤情况S-PSP
    最大主应力378.6%275.6%303.8%
    纵向应变−45.5%−41.5%−42.9%
    剪应变−23.5%−11.3%−14.4%
    受压损伤−9.9%−4.4%−5.5%
    受拉损伤−7.8%−4.2%−5.7%
    下载: 导出CSV

    表  4  纤维掺量变化时指标变化幅度

    Table  4.   The magnitude of the index change when the fiber content changes

    力学性能及损伤情况 $ {\rho }_{\mathrm{p}\mathrm{f}} $由0.05%增至0.15%时对应变化幅度 $ {\rho }_{\mathrm{s}\mathrm{f}} $由0.5%增至1.9%时对应变化幅度
    $ {\rho }_{\mathrm{s}\mathrm{f}} $=0.5% $ {\rho }_{\mathrm{s}\mathrm{f}} $=1.2% $ {\rho }_{\mathrm{s}\mathrm{f}} $=1.9% $ {\rho }_{\mathrm{p}\mathrm{f}} $=0.05% $ {\rho }_{\mathrm{p}\mathrm{f}} $=0.10% $ {\rho }_{\mathrm{p}\mathrm{f}} $=0.15%
    拱顶最大主应力 30.8% 22.4% 17.7% 35.5% 27.4% 21.9%
    拱顶压应变 −13.9% −14.7% −13.6% −9.8% −8.8% −9.5%
    拱脚剪应变 −8.1% −7.9% −8.3% −7.6% −7.7% −7.8%
    拱脚受压损伤因子 −22.3% −26.7% −31.3% −18.1% −19.6% −27.6%
    拱脚受拉损伤因子 −8.8% −10.1% −8.96% −7.3% −8.1% −7.4%
    下载: 导出CSV
  • 白晓玮, 2017. 混凝土损伤本构关系的研究与应用. 郑州: 郑州大学.

    Bai X. W., 2017. Study and application on the damage constitutive law for concrete. Zhengzhou: Zhengzhou University. (in Chinese)
    程卓群, 彭刚, 孙尚鹏等, 2019. 基于Najar能量法的混凝土动态双轴受压损伤特性分析. 水利水运工程学报, (4): 100−106.

    Cheng Z. Q., Peng G., Sun S. P., et al., 2019. Analysis of dynamic biaxial compression damage characteristics of concrete based on Najar energy method. Hydro-Science and Engineering, (4): 100−106. (in Chinese)
    崔光耀, 蒋梦新, 王明胜, 2022. 高烈度地震区隧道洞口段纤维混凝土衬砌抗震效果分析. 现代隧道技术, 59(1): 207−213.

    Cui G. Y., Jiang M. X., Wang M. S., 2022. Anti-seismic effect of fiber-reinforced concrete lining at tunnel portals in high-intensity seismic areas. Modern Tunnelling Technology, 59(1): 207−213. (in Chinese)
    丁一宁, 董香军, 王岳华, 2005. 混杂纤维自密实混凝土的强度和抗弯韧性. 建筑材料学报, 8(3): 294−298.

    Ding Y. N., Dong X. J., Wang Y. H., 2005. Strength and flexural toughness of hybrid fiber reinforced self-compacted concrete. Journal of Building Materials, 8(3): 294−298. (in Chinese)
    刘伟, 2019. 地下隧道钢纤维混凝土衬砌抗爆性能研究. 淮南: 安徽理工大学.

    Liu W., 2019. Study on anti-explosion performance of steel fiber reinforced concrete lining in underground tunnel. Huainan: Anhui University of Science and Technology. (in Chinese)
    梅国栋, 2014. 钢−聚丙烯混杂纤维混凝土单轴受拉性能与本构关系研究. 武汉: 武汉大学.

    Mei G. D., 2014. Study on uniaxial tensile properties and constitutive relation of steel-polypropylene hybrid fiber reinforced concrete. Wuhan: Wuhan University. (in Chinese)
    倪亮, 2020. 钢纤维混凝土单轴受压性能及本构关系研究. 武汉: 湖北工业大学.

    Ni L., 2020. Research on uniaxial compression performance and constitutive relationship of steel fiber reinforced concrete. Wuhan: Hubei University of Technology. (in Chinese)
    邱兆文, 喻烟, 杜义等, 2021. 逆断层错动对隧道工程影响的数值模拟. 地震学报, 43(2): 237−244.

    Qiu Z. W., Yu Y., Du Y., et al., 2021. Numerical analysis of effect of reverse fault dislocation on tunnel engineering. Acta Seismologica Sinica, 43(2): 237−244. (in Chinese)
    王红喜, 陈友治, 丁庆军等, 2004. 混杂纤维对高性能混凝土力学性能与抗渗性能的影响. 混凝土与水泥制品, (1): 38−40.

    Wang H. X., Chen Y. Z., Ding Q. J., et al., 2004. Effact of hybrid fibers on mechanical properties and impermeability of high performance concrete. China Concrete and Cement Products, (1): 38−40. (in Chinese)
    王耀达, 2023. 走滑断层错动与地震动作用隧道力学响应及减震层措施研究. 成都: 西南交通大学.

    Wang Y. D., 2023. Study on mechanical response and damping layer measures of tunnels under the strike-slip fault and earthquake. Chengdu: Southwest Jiaotong University. (in Chinese)
    徐礼华, 梅国栋, 黄乐等, 2014. 钢−聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究. 土木工程学报, 47(7): 35−45.

    Xu L. H., Mei G. D., Huang L., et al., 2014. Study on uniaxial tensile stress-strain relationship of steel-polypropylene hybrid fiber reinforced concrete. China Civil Engineering Journal, 47(7): 35−45. (in Chinese)
    杨萌, 黄承逵, 2006. 钢纤维高强混凝土轴拉性能试验研究. 土木工程学报, 39(3): 55−61.

    Yang M., Huang C. K., 2006. Study on stress-strain curve of high strength steel fiber reinforced concrete under uniaxial tension. China Civil Engineering Journal, 39(3): 55−61. (in Chinese)
    张恒, 2023. 跨蠕滑断层隧道精细化建模及力学分析. 哈尔滨: 中国地震局工程力学研究所.

    Zhang H., 2023. Fine modeling and mechanical analysis of tunnel across creep fault. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    张雨童, 2020. 西安地裂缝活动环境下综合管廊结构变形规律及安全预警方法研究. 西安: 西安建筑科技大学.

    Zhang Y. T., 2020. Research on structure deformation regularity and safety early warning method of integrated pipe gallery in active environment of Xi’an ground fissure. Xi'an: Xi'an University of Architecture and Technology. (in Chinese)
    张元元, 2010. 钢-聚丙烯混杂纤维混凝土单轴受压本构关系与受拉性能研究. 武汉: 武汉大学.

    Zhang Y. Y., 2010. Study on uniaxial compressive constitutive relationship and uniaxial tensile behavior of steel-polypropylene hybrid fiber reinforced concrete. Wuhan: Wuhan University. (in Chinese)
    An S., Tao L. J., Han X. C., et al., 2021. Application of two-level design method on subway tunnel crossing active fault: a case study on Urumqi subway tunnel intersected by reverse fault dislocation. Bulletin of Engineering Geology and the Environment, 80(5): 3871−3884. doi: 10.1007/s10064-021-02164-y
    Pul S., Ghaffari A., Öztekin E., et al., 2017. Experimental determination of cohesion and internal friction angle on conventional concretes. ACI Materials Journal, 114(3): 407−416.
    Wang D. Y., Qi J. S., Cui G. Y., et al., 2020. Model test on bearing characteristics of basalt fiber-reinforced concrete lining. Advances in Materials Science and Engineering, 2020(1): 3891343. doi: 10.1155/2020/3891343
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-06
  • 录用日期:  2025-01-14
  • 修回日期:  2024-12-23
  • 网络出版日期:  2025-09-24

目录

    /

    返回文章
    返回