• ISSN 1673-5722
  • CN 11-5429/P

新型竖缝互锁灌孔复合砌块墙体抗压及抗震性能试验研究

徐笠畅 李铮翔 夏多田 朱楚翔 周长乐

徐笠畅,李铮翔,夏多田,朱楚翔,周长乐,2024. 新型竖缝互锁灌孔复合砌块墙体抗压及抗震性能试验研究. 震灾防御技术,19(1):24−36. doi:10.11899/zzfy20240103. doi: 10.11899/zzfy20240103
引用本文: 徐笠畅,李铮翔,夏多田,朱楚翔,周长乐,2024. 新型竖缝互锁灌孔复合砌块墙体抗压及抗震性能试验研究. 震灾防御技术,19(1):24−36. doi:10.11899/zzfy20240103. doi: 10.11899/zzfy20240103
Xu Lichang, Li Zhengxiang, Xia Duotian, Zhu Chuxiang, Zhou Changle. Experimental Study on Compressive and Seismic Performance of New Type of Vertical Joint Interlocking Grouting Composite Block Wall[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 24-36. doi: 10.11899/zzfy20240103
Citation: Xu Lichang, Li Zhengxiang, Xia Duotian, Zhu Chuxiang, Zhou Changle. Experimental Study on Compressive and Seismic Performance of New Type of Vertical Joint Interlocking Grouting Composite Block Wall[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 24-36. doi: 10.11899/zzfy20240103

新型竖缝互锁灌孔复合砌块墙体抗压及抗震性能试验研究

doi: 10.11899/zzfy20240103
基金项目: 国家自然科学基金(52168026、51468057)
详细信息
    作者简介:

    徐笠畅,男,生于1999年。硕士研究生。主要从事新型砌体结构研究。E-mail:20232110052@stu.shzu.edu.cn

    通讯作者:

    夏多田,男,生于1979年。副教授。主要从事新型砌体结构研究。E-mail:xdt_xxl@shzu.edu.cn

Experimental Study on Compressive and Seismic Performance of New Type of Vertical Joint Interlocking Grouting Composite Block Wall

  • 摘要: 新型竖缝互锁灌孔复合砌块墙体是一种绿色、环保且低碳的新型砌体结构,为研究其抗压性能与抗震性能,分别对墙体进行轴压试验与拟静力试验,分析灌孔方式与构造柱类型对该墙体抗压承载力、荷载分配与变形协调等方面的影响,以及不同构造柱类型对墙体抗震性能的影响。结果表明,随着现浇构造柱与复合砌体部分强度差的减小,墙体整体变形协调能力有所提升;提出了适用于设置构造柱的新型墙体的抗压承载力计算公式,计算值与试验值吻合度较好;芯柱构造柱对墙体延性的提升效率高于现浇构造柱墙体,而现浇构造柱墙体的抗震承载力、极限位移等指标优于芯柱构造柱墙体。研发绿色、环保、低碳的新型砌体结构是助力国家乡村振兴战略和改善村镇建筑抗灾能力的有效途径,该新型墙体结构为新疆地区村镇建筑提供了一种新的选择。
  • 图  1  各墙体横截面示意图

    Figure  1.  Cross section diagram of each wall

    图  2  砌块平面示意图(单位:毫米)

    Figure  2.  Plan view of the block(Unit:mm)

    图  3  轴压试验加载装置与墙体试件示意图

    Figure  3.  Schematic diagram of axial compression test loading device and wall specimens

    图  4  拟静力试验加载装置示意图

    Figure  4.  Schematic diagram of seismic test loading device

    图  5  测点布置示意图

    Figure  5.  Schematic diagram of measurement point layout

    图  6  墙体破坏形态及裂缝发展分布示意图(单位:千牛)

    Figure  6.  Schematic diagram of wall failure morphology and crack development distribution(Unit:kN)

    图  7  各因素对墙体抗压性能的影响

    Figure  7.  The influence of various factors on the compressive performance of walls

    图  8  VJIBW5荷载分配与应变分布图

    Figure  8.  Load distribution and strain distribution diagram of VJIBW5

    图  9  VJIBW6荷载分配与应变分布图

    Figure  9.  Load distribution and strain distribution diagram of VJIBW6

    图  10  墙体破坏形态及裂缝发展分布示意图

    Figure  10.  Schematic diagram of wall failure morphology and crack development distribution

    图  11  墙体试件滞回曲线图

    Figure  11.  Hysteresis curve of wall specimens

    图  12  墙体试件骨架曲线图

    Figure  12.  Skeleton curve diagram of wall specimens

    图  13  墙体试件骨架曲线图

    Figure  13.  Skeleton diagram of wall specimen

    图  14  墙体试件刚度退化曲线对比图

    Figure  14.  Comparison of stiffness degradation curves of wall specimens

    表  1  复合砌块墙体抗压及抗震性能试验方案

    Table  1.   Test plan for compressive and seismic performance of composite block walls

    编号墙体长×高×厚/mm灌孔方式构造柱措施
    VJIBW11360×1390×190满灌无构造柱
    VJIBW21360×1390×190空心芯柱LC20
    VJIBW31360×1390×190中部单孔灌注芯柱LC20
    VJIBW41360×1390×190满灌芯柱LC20
    VJIBW51390×1390×190满灌现浇LC20
    VJIBW61390×1390×190满灌现浇LC25
    VJIBW71755×1600×190满灌芯柱LC20
    VJIBW81755×1600×190满灌现浇LC20
    注:其中VJIBW1、VJIBW2、VJIBW3、VJIBW4、VJIBW5、VJIBW6为抗压试验墙体,VJIBW7、VJIBW8为抗震试验墙体。
    下载: 导出CSV

    表  2  墙体材料抗压强度

    Table  2.   Compressive strength of wall materials

    项目墙体材料
    砂浆灌孔材料陶粒混凝土空心砌块空心砌块砌体灌孔砌块砌体
    设计强度等级Mb5.0Cb5.0LC20LC25MU5
    实测强度均值/MPa5.606.0519.3023.905.272.995.76
    下载: 导出CSV

    表  3  墙体抗压试验结果

    Table  3.   Compressive test results of walls

    编号初裂荷载/kN开裂荷载/kN极限荷载/kN强度/MPa
    VJIBW1480.0680.01135.04.39
    VJIBW2320.0440.0880.53.41
    VJIBW3170.0320.0960.03.72
    VJIBW4360.0480.01413.85.47
    VJIBW5400.0600.02126.08.23
    VJIBW6500.0750.02105.08.15
    下载: 导出CSV

    表  4  现浇构造柱墙体荷载分配

    Table  4.   Load distribution of cast-in-place structural column walls

    加载步VJIBW5VJIBW6
    荷载/kNε0×106ε1×106ε2×106Nw/kNNc1/kNNc2/kN荷载/kNε0×106ε1×106ε2×106Nw/kNNc1/kNNc2/kN
    100.00.00.00.00.00.000.00.00.00.00.00.0
    220038.337.339.371.762.565.825017.0148.3149.331.8108.7109.5
    340079.074.789.3147.8114.8137.450075.0292.0294.7140.4179.0180.6
    4600114.0109.0127.3213.4178.3208.3750116.5363.0367.3218.0264.4267.6
    5700151.0142.3168.7282.6191.0226.4875174.5431.7439.7326.6271.7276.7
    6800194.0173.7210.0363.1197.8239.21000246.0503.0510.0460.4267.9271.7
    7900230.3202.7250.7431.1209.6259.31125321.5574.3581.7601.7260.0263.3
    81000271.7232.3293.0508.4217.4274.21250417.5649.7657.3781.4232.9235.7
    91100316.7260.3340.7592.6219.8287.61375482.5704.7714.0903.0234.4237.6
    101200361.3288.7387.3676.2223.7300.11500548.5773.7787.01026.5234.7238.8
    111300389.3318.7438.0728.6240.6330.71625609.5836.7851.31140.7240.1244.3
    121400403.7353.0490.7755.5269.7374.91750701.0905.3906.01311.9219.0219.1
    131500457.3387.3551.0855.9265.9378.21875859.5981.3994.01608.6132.4134.1
    141600616.7465.0680.71154.1181.0264.92000854.51018.01035.01599.2198.7202.1
    151800702.7532.7803.71315.0193.3291.72105780.51034.31049.31460.7319.8324.5
    162000852.2540.7829.01321.3267.9410.8
    172126897.2548.7865.71288.2325.0512.8
    注:表中ε0ε1ε2分别为墙体中部复合砌体部分、左侧构造柱、右侧构造柱应变;NwNc1Nc2分别为墙体中部复合砌体部分、左侧构造柱、右侧构造柱承担的荷载;表中应变为应变片测得的微应变,故表示为ε×106图8图9中应变值同理。
    下载: 导出CSV

    表  5  墙体荷载及位移特征值

    Table  5.   Load and displacement characteristic values of walls

    编号开裂极限破坏
    Pcr/kNΔcr/mmPu/kNΔu/mmPf/kNΔf/mm
    VJIBW793.754.89138.0517.13117.1021.98
    VJIBW8127.125.90226.2419.90191.5024.35
    下载: 导出CSV

    表  6  墙体延性分析表

    Table  6.   Analytical results of wall ductility

    编号Py/kNΔy/mmΔu/mmΔf/mmμλRu
    VJIBW7115.087.7817.1321.982.831.281/73
    VJIBW8204.9314.9019.9024.351.631.221/66
    下载: 导出CSV
  • 曹阳, 2020. 装配式互锁混凝土砌块墙的抗震性能研究. 长沙: 湖南大学.

    Cao Y. , 2020. Research on seismic performance of prefabricated interlocking concrete block wall. Changsha: Hunan University. (in Chinese)
    常想徳, 孙静, 谭明, 2021. 新疆农牧区民居房屋结构类型与震害特征分析. 内陆地震, 35(1): 75—86

    Chang X. D. , Sun J. , Tan M. , 2021. Analysis on structural types and earthquake damage features of rural houses in Xinjiang agricultural and pastoral areas. Inland Earthquake, 35(1): 75—86. (in Chinese)
    范军, 刘福胜, 胡玉秋等, 2018. 自保温暗骨架承重墙体保温性能和抗压强度试验研究. 新型建筑材料, 45(6): 109—111 doi: 10.3969/j.issn.1001-702X.2018.06.026

    Fan J. , Liu F. S. , Hu Y. Q. , et al. , 2018. Experimental research on thermal insulation performance and comprehensive strength of self-insulating structural wall with inner frame. New Building Materials, 45(6): 109—111. (in Chinese) doi: 10.3969/j.issn.1001-702X.2018.06.026
    葛玉琦, 2010. 芯柱式构造柱约束墙体抗震性能试验研究. 重庆: 重庆大学.

    Ge Y. Q. , 2010. Experimental research on seismic behavior of masonry walls constrained by core-tie-columns. Chongqing: Chongqing University. (in Chinese)
    黄靓, 施楚贤, 2019. 新中国成立70年来砌体结构发展与展望. 建筑结构, 49(19): 113—118, 135

    Huang L. , Shi C. X. , 2019. Development and prospect of masonry structure in 70 years since the founding of People's Republic of China. Building Structure, 49(19): 113—118, 135. (in Chinese)
    黄靓, 张玥, 施楚贤等, 2022. 超薄灰缝烧结弃土高性能砌块砌体受力性能研究. 建筑结构, 52(13): 147—152

    Huang L. , Zhang Y. , Shi C. X. , et al. , 2022. Study on the mechanical properties of ultra-thin layer mortared high performance musk sintered block masonry. Building Structure, 52(13): 147—152. (in Chinese)
    李启鑫, 翟希梅, 唐岱新, 2004. 设置构造柱混凝土砌块墙体受压承载力试验研究. 建筑砌块与砌块建筑, (6): 7—11.
    刘桂秋, 赵衍, 施楚贤等, 2010. 灌孔砼砌块砌体中材料强度匹配问题的研究. 湖南大学学报(自然科学版), 37(2): 18—21

    Liu G. Q. , Zhao Y. , Shi C. X. , et al. , 2010. Analyses of material strength match of grouted concrete block masonry. Journal of Hunan University (Natural Sciences), 37(2): 18—21. (in Chinese)
    施楚贤, 1996. 设置砼构造柱砖砌体结构受压承载力计算. 建筑结构, (3): 13—16.
    温和平, 唐丽华, 刘军等, 2016. 新疆农居安居工程现状调查及减灾实效分析. 自然灾害学报, 25(5): 184—190

    Wen H. P. , Tang L. H. , Liu J. , et al. , 2016. Present situation investigation of rural housing project in Xinjiang and analysis of its actual disaster reduction effectiveness. Journal of Natural Disasters, 25(5): 184—190. (in Chinese)
    徐春一, 许纪峰, 马莹莹等, 2020. 竖向灰缝处有无砂浆砌体沿齿缝截面抗弯性能研究. 沈阳建筑大学学报(自然科学版), 36(3): 449—456

    Xu C. Y. , Xu J. F. , Ma Y. Y. , et al. , 2020. Experimental study on flexural behavior of mortar masonry with and without vertical mortar joints along teeth joint section. Journal of Shenyang Jianzhu University (Natural Science), 36(3): 449—456. (in Chinese)
    徐建, 梁建国, 杨春侠, 2022. 砌体结构的现状与发展建议. 土木工程学报, 55(5): 1—6

    Xu J. , Liang J. G. , Yang C. X. , 2022. The current situation of masonry structure and its development suggestions. China Civil Engineering Journal, 55(5): 1—6. (in Chinese)
    郁晓玲, 何明胜, 汤伟忠等, 2016. 新型复合墙体抗压性能试验研究. 建筑结构, 46(12): 60—66

    Yu X. L. , He M. S. , Tang W. Z. , et al. , 2016. Experimental study on compressive properties of the new composite wall. Building Structure, 46(12): 60—66. (in Chinese)
    张国伟, 王胜, 陈嵘等, 2017. 干垒式灌孔混凝土砌块砌体抗压性能试验研究. 建筑科学, 33(11): 42—47

    Zhang G. W. , Wang S. , Chen R. , et al. , 2017. Experimental study on compressive performance of dry-stacked grouted-concrete block masonry. Building Science, 33(11): 42—47. (in Chinese)
    朱楚翔, 2019. 带芯柱构造柱灌孔复合砌块墙体抗压性能研究. 石河子: 石河子大学.

    Zhu C. X. , 2019. Research on compressive performance of grouted composite block wall with core-column. Shihezi: Shihezi University. (in Chinese)
    朱婉婕, 黄靓, 滕瀚思等, 2019. 用于装配式墙体的加长型混凝土砌块砌体的受力性能试验研究. 结构工程师, 35(3): 187—191 doi: 10.3969/j.issn.1005-0159.2019.03.026

    Zhu W. J. , Huang L. , Teng H. S. , et al. , 2019. Research on mechanical properties of prefabricated lengthened concrete block masonry. Structural Engineers, 35(3): 187—191. (in Chinese) doi: 10.3969/j.issn.1005-0159.2019.03.026
    Dyskin A. V. , Pasternak E. , Estrin Y. , 2012. Mortarless structures based on topological interlocking. Frontiers of Structural and Civil Engineering, 6(2): 188—197.
    Fonseca F. S. , Fortes E. S. , Parsekian G. A. , et al. , 2019. Compressive strength of high-strength concrete masonry grouted prisms. Construction and Building Materials, 202: 861—876. doi: 10.1016/j.conbuildmat.2019.01.037
    Nalon G. H. , Ribeiro J. C. L. , Pedroti L. G. , et al. , 2022. Review of recent progress on the compressive behavior of masonry prisms. Construction and Building Materials, 320: 126181. doi: 10.1016/j.conbuildmat.2021.126181
    Yi M. S., Xu Y. Q., Lou N., et al., 2013. Theoretical analysis and experimental study of strength matching between mortarless grouted concrete and block material. Applied Mechanics and Materials, 368—370: 1022—1026.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  7
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-01
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回