• ISSN 1673-5722
  • CN 11-5429/P

四种常用除丛算法的比较研究

毕金孟 宋程 马永

毕金孟,宋程,马永,2025. 四种常用除丛算法的比较研究. 震灾防御技术,20(1):52−62. doi:10.11899/zzfy20240090. doi: 10.11899/zzfy20240090
引用本文: 毕金孟,宋程,马永,2025. 四种常用除丛算法的比较研究. 震灾防御技术,20(1):52−62. doi:10.11899/zzfy20240090. doi: 10.11899/zzfy20240090
Bi Jinmeng, Song Cheng, Ma Yong. A Comparative Study of Four Commonly Used Declustering Algorithms[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 52-62. doi: 10.11899/zzfy20240090
Citation: Bi Jinmeng, Song Cheng, Ma Yong. A Comparative Study of Four Commonly Used Declustering Algorithms[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 52-62. doi: 10.11899/zzfy20240090

四种常用除丛算法的比较研究

doi: 10.11899/zzfy20240090
基金项目: 中国地震局震情跟踪定向工作任务(2024010111);国家自然科学基金青年项目(42404079);天津市自然科学基金青年项目(22JCQNJC01070)
详细信息
    作者简介:

    毕金孟,男,生于1989年。高级工程师。主要从事地震活动性和地震危险性研究工作。E-mail:jinmengbi@126.com

  • 12 http://10.5.160.18/console/exit.action,查阅时间截至2024年02月10日。

A Comparative Study of Four Commonly Used Declustering Algorithms

  • 摘要: 合理的开展地震目录除丛,即确定地震序列中的背景事件和丛集事件,是地震序列分析和模型构建的重要环节。本文针对常用的时空窗法、伪随机时空窗法、最邻近法和随机除丛法进行对比分析,并通过K-S和变化系数等方法在华北地块5条地震带中检验除丛效果。总体而言,时空窗法以及最邻近法有效删除了所有地震带的丛集事件,除丛结果均服从泊松分布,但除丛比例相对较高,尤其对小震的删除比例偏高,使得b值变小;随机除丛法有效去除了序列中丛集事件,同时保留了大多数事件,对震级的依赖性较弱,没有显著地改变统计特性(b值);相比之下,伪随机时空窗法仅在2个地震带中有效地去除了丛集事件,其余地震带未通过泊松检验,对高震级档地震的删除比例偏高,使得b值增加。本文的对比分析结果可为区域选择合适的除丛算法提供参考,为地震活动性分析和地震危险性评估提供数据支撑。
    1)  12 http://10.5.160.18/console/exit.action,查阅时间截至2024年02月10日。
  • 图  1  华北地块不同地震带的地震活动特征

    Figure  1.  The seismicity characteristics of different seismic zones in the North China block

    图  2  华北地块1970年以来地震目录完整性分析

    Figure  2.  Completeness analysis of earthquake catalogs in the North China block since 1970

    图  3  华北地块不同地震带序列活动的除丛特征

    Figure  3.  The declustering characteristics of seismicity sequences in different seismic zones of the North China block

    图  4  四种除丛算法在华北地块不同地震带的移除比例

    Figure  4.  Fraction of earthquake removed by declustering algorithms in different seismic zones of the North China block

    图  5  华北地块不同地震带2.5级以上地震事件的b值计算结果

    Figure  5.  Calculation results of b-values with M ≥ 2.5 in different seismic zones of the North China block

    表  1  4种除丛算法的对比分析结果

    Table  1.   Comparative analysis of results by four declustering algorithms

    构造区域 除丛算法 背景数目/个 丛集数目/个 移除比例/% 变化系数Cv K-S检验 b
    P α=0.01,是否接受原假设
    长江下游—黄海地震带原始目录2769001.34636.8 e-090.78±0.01
    时空窗法1427134248.471.01150.20370.72±0.02
    伪随机时空窗法226050918.381.18210.03670.83±0.02
    最邻近法1350141951.250.93880.27550.72±0.02
    随机除丛法200776227.521.12280.47040.78±0.02
    郯庐地震带原始目录6160001.40721.9 e-110.83±0.01
    时空窗法1910425068.991.03090.46540.79±0.02
    伪随机时空窗法4485167527.191.15136.7 e-060.98±0.01
    最邻近法1900426069.160.94610.29890.81±0.02
    随机除丛法3109305149.531.09370.08180.88±0.02
    华北平原地震带原始目录5391001.46852.1 e-170.75±0.01
    时空窗法1399399274.051.00700.17920.78±0.02
    伪随机时空窗法3817157429.201.17681.9 e-050.88±0.01
    最邻近法1763362867.300.94540.19070.80±0.02
    随机除丛法2779261248.451.08110.04030.79±0.02
    汾渭地震带原始目录3994001.30146.3 e-080.89±0.01
    时空窗法1390260465.200.99730.25150.78±0.02
    伪随机时空窗法319180320.111.10972.2 e-041.03±0.02
    最邻近法1938205651.480.91100.92930.89±0.02
    随机除丛法2817117729.471.09930.06530.96±0.02
    银川—河套地震带原始目录3317001.33321.3 e-070.77±0.01
    时空窗法1123219466.140.98930.30210.69±0.02
    伪随机时空窗法272059718.001.18160.01300.85±0.01
    最邻近法1542177553.510.98680.09970.73±0.02
    随机除丛法263768020.501.12380.02010.78±0.02
    下载: 导出CSV
  • 陈凌,刘杰,陈颙等,1998. 地震活动性分析中余震的删除. 地球物理学报,41(S1):244−252.

    Chen L., Liu J., Chen Y., et al., 1998. Aftershock deletion in seismicity analysis. Chinese Journal of Geophysics, 41(S1): 244−252. (in Chinese)
    蒋长胜,庄建仓,2010. 基于时-空ETAS模型给出的川滇地区背景地震活动和强震潜在危险区. 地球物理学报,53(2):305−317.

    Jiang C. S., Zhuang J. C., 2010. Evaluation of background seismicity and potential source zones of strong earthquakes in the Sichuan-Yunan region base on the space-time ETAS model. Chinese Journal of Geophysics, 53(2): 305−317. (in Chinese)
    蒋长胜,吴忠良,2011. 2010年玉树 M S7.1地震前的中长期加速矩释放(AMR)问题. 地球物理学报,54(6):1501−1510. doi: 10.3969/j.issn.0001-5733.2011.06.009

    Jiang C. S., Wu Z. L., 2011. Intermediate-term medium-range accelerating moment release (AMR) priori to the 2010 Yushu M S7.1 earthquake. Chinese Journal of Geophysics, 54(6): 1501−1510. (in Chinese) doi: 10.3969/j.issn.0001-5733.2011.06.009
    潘华,高孟潭,谢富仁,2013. 新版地震区划图地震活动性模型与参数确定. 震灾防御技术,8(1):11−23.

    Pan H., Gao M. T., Xie F. R., 2013. The earthquake activity model and seismicity parameters in the new seismic hazard map of China. Technology for Earthquake Disaster Prevention, 8(1): 11−23. (in Chinese)
    易桂喜,闻学泽,范军等,2004. 由地震活动参数分析安宁河-则木河断裂带的现今活动习性及地震危险性. 地震学报,26(3):294−303.

    Yi G. X., Wen X. Z., Fan J., et al., 2004. Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters. Acta Seismologica Sinica, 26(3): 294−303. (in Chinese)
    张帆,韩晓明,陈立峰等,2018. 鄂尔多斯地块北缘 b 值的时空特征及其地震预测效能分析. 地震学报,40(6):785−796.

    Zhang F., Han X. M., Chen L. F., et al., 2018. Spatio-temporal characteristics of b value in the northern margin of Ordos block and its earthquake prediction efficiency. Acta Seismologica Sinica, 40(6): 785−796. (in Chinese)
    朱艾斓,徐锡伟,甘卫军等,2009. 鲜水河-安宁河-则木河断裂带上可能存在的凹凸体:来自背景地震活动性的证据. 地学前缘,16(1):218−225.

    Zhu A. L., Xu X. W., Gan W. J., et al., 2009. The possible asperities on the Xianshuihe-Anninghe-Zemuhe fault zone: evidence from background seismicity. Earth Science Frontiers, 16(1): 218−225. (in Chinese)
    Abolfathian N., Martínez-Garzón P., Ben-Zion Y., 2019. Spatiotemporal variations of stress and strain parameters in the San Jacinto fault zone. Pure and Applied Geophysics, 176(3): 1145−1168. doi: 10.1007/s00024-018-2055-y
    Aki K., 1965. Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits. Bulletin of the Earthquake Research Institute Tokyo University, 43: 237−239.
    Baiesi M., Paczuski M., 2004. Scale-free networks of earthquakes and aftershocks. Physical Review E, 69(6): 066106. doi: 10.1103/PhysRevE.69.066106
    Ben-Zion Y., Zaliapin I., 2020. Localization and coalescence of seismicity before large earthquakes. Geophysical Journal International, 223(1): 561−583. doi: 10.1093/gji/ggaa315
    Bi J. M., Jiang C. S., 2022. Identification and statistical characteristics of foreshock sequences in the north-south seismic belt. Journal of Seismology, 26(3): 499−512. doi: 10.1007/s10950-021-10063-8
    Crespo-Martín C., Martín-González F., Yazdi P., et al., 2021. Time-dependent and spatiotemporal statistical analysis of intraplate anomalous seismicity: Sarria-Triacastela-Becerreá (NW Iberian Peninsula, Spain). Geophysical Journal International, 225: 477−493. doi: 10.1093/gji/ggaa595
    Gardner J. K. , Knopoff L. , 1974. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64 (5): 1363−1367.
    Gutenberg B., Richter C. F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4): 185−188. doi: 10.1785/BSSA0340040185
    Kagan Y. Y., Jackson D. D., 1991. Long-term earthquake clustering. Geophysical Journal International, 104(1): 117−133. doi: 10.1111/j.1365-246X.1991.tb02498.x
    Llenos A. L., Michael A. J., 2020. Regionally optimized background earthquake rates from ETAS (ROBERE) for probabilistic seismic hazard assessment. Bulletin of the Seismological Society of America, 110(3): 1172−1190. doi: 10.1785/0120190279
    Luen B., Stark P. B., 2012. Poisson tests of declustered catalogues. Geophysical Journal International, 189(1): 691−700. doi: 10.1111/j.1365-246X.2012.05400.x
    Martínez-Garzón P., Vavryčuk V., Kwiatek G., et al., 2016. Sensitivity of stress inversion of focal mechanisms to pore pressure changes. Geophysical Research Letters, 43(16): 8441−8450. doi: 10.1002/2016GL070145
    Mizrahi L., Nandan S., Wiemer S., 2021. The effect of declustering on the size distribution of mainshocks. Seismological Research Letters, 92(4): 2333−2342. doi: 10.1785/0220200231
    Molchan G. M., Dmitrieva O. E., 1992. Aftershock identification: methods and new approaches. Geophysical Journal International, 109(3): 501−516. doi: 10.1111/j.1365-246X.1992.tb00113.x
    Ogata Y., 1988. Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401): 9−27. doi: 10.1080/01621459.1988.10478560
    Ogata Y., 1998. Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2): 379−402. doi: 10.1023/A:1003403601725
    Pastoressa A. E, Murru M., Taroni M., et al., 2023. Temporal variations of seismicity rates and Gutenberg–Richter b-values for a stochastic declustered catalog: an example in central Italy. Seismological Research Letters, 94(3): 1566−1578.
    Peng W., Marsan D., Chen K. H., et al., 2021. Earthquake swarms in Taiwan: a composite declustering method for detection and their spatial characteristics. Earth and Planetary Science Letters, 574: 117160. doi: 10.1016/j.jpgl.2021.117160
    Peresan A., Gentili S., 2020. Identification and characterisation of earthquake clusters: a comparative analysis for selected sequences in Italy and adjacent regions. Bollettino di Geofisica Teorica ed Applicata, 61(1): 57−80.
    Petersen M. D., Mueller C. S., Moschetti M. P., et al., 2018. 2018 One-year seismic hazard forecast for the central and eastern united states from induced and natural earthquakes. Seismological Research Letters, 89(3): 1049−1061. doi: 10.1785/0220180005
    Reasenberg P., 1985. Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7): 5479−5495. doi: 10.1029/JB090iB07p05479
    Schorlemmer D., Gerstenberger M. C., 2007. RELM testing center. Seismological Research Letters, 78(1): 30−36. doi: 10.1785/gssrl.78.1.30
    Shi Y. L., Bolt B. A., 1982. The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72(5): 1677−1687. doi: 10.1785/BSSA0720051677
    Talbi A., Nanjo K., Satake K., et al., 2013. Comparison of seismicity declustering methods using a probabilistic measure of clustering. Journal of Seismology, 17(3): 1041−1061. doi: 10.1007/s10950-013-9371-6
    Taroni M., Akinci A., 2021. Good practices in PSHA: declustering, b-value estimation, foreshocks and aftershocks inclusion: a case study in Italy. Geophysical Journal International, 224(2): 1174−1187.
    Teng G. Y., Baker J. W., 2019. Seismicity declustering and hazard analysis of the Oklahoma-Kansas region. Bulletin of the Seismological Society of America, 109(6): 2356−2366. doi: 10.1785/0120190111
    Toda S., Stein R. S., Reasenberg P. A., et al., 1998. Stress transferred by the 1995 MW=6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research: Solid Earth, 103(B10): 24543−24565. doi: 10.1029/98JB00765
    Wiemer S., Wyss M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4): 859−869. doi: 10.1785/0119990114
    Wyss M., 1973. Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal International, 31(4): 341−359. doi: 10.1111/j.1365-246X.1973.tb06506.x
    Zaliapin I., Gabrielov A., Keilis-Borok V., et al., 2008. Clustering analysis of seismicity and aftershock identification. Physical Review Letters, 101(1): 018501. doi: 10.1103/PhysRevLett.101.018501
    Zaliapin I., Ben-Zion Y., 2013. Earthquake clusters in southern California I: identification and stability. Journal of Geophysical Research: Solid Earth, 118(6): 2847−2864. doi: 10.1002/jgrb.50179
    Zaliapin I., Ben-Zion Y., 2016. A global classification and characterization of earthquake clusters. Geophysical Journal International, 207(1): 608−634. doi: 10.1093/gji/ggw300
    Zaliapin I., Ben-Zion Y., 2020. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain. Journal of Geophysical Research: Solid Earth, 125(4): e2018JB017120. doi: 10.1029/2018JB017120
    Zhou P. C., Yang H. F., Wang B. S., et al., 2019. Seismological investigations of induced earthquakes near the Hutubi underground gas storage facility. Journal of Geophysical Research: Solid Earth, 124(8): 8753−8770. doi: 10.1029/2019JB017360
    Zhuang J. C., Ogata Y., Vere-Jones D., 2002. Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97(458): 369−380. doi: 10.1198/016214502760046925
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 录用日期:  2024-09-09
  • 修回日期:  2024-07-11
  • 网络出版日期:  2025-04-18
  • 刊出日期:  2025-03-30

目录

    /

    返回文章
    返回